Showing 1 - 10 of 10 results for "72192"
- ReferenceM. Trapecar et al. (mar 2020) Cell systems 10 3 223--239.e9
Gut-Liver Physiomimetics Reveal Paradoxical Modulation of IBD-Related Inflammation by Short-Chain Fatty Acids.
Although the association between the microbiome and IBD and liver diseases is known, the cause and effect remain elusive. By connecting human microphysiological systems of the gut, liver, and circulating Treg and Th17 cells, we created a multi-organ model of ulcerative colitis (UC) ex vivo. The approach shows microbiome-derived short-chain fatty acids (SCFAs) to either improve or worsen UC severity, depending on the involvement of effector CD4 T cells. Using multiomics, we found SCFAs increased production of ketone bodies, glycolysis, and lipogenesis, while markedly reducing innate immune activation of the UC gut. However, during acute T cell-mediated inflammation, SCFAs exacerbated CD4+ T cell-effector function, partially through metabolic reprograming, leading to gut barrier disruption and hepatic injury. These paradoxical findings underscore the emerging utility of human physiomimetic technology in combination with systems immunology to study causality and the fundamental entanglement of immunity, metabolism, and tissue homeostasis. View PublicationCatalog #: Product Name: 10971 ImmunoCult™ Human CD3/CD28 T Cell Activator 19058 EasySep™ Human Monocyte Enrichment Kit without CD16 Depletion 72192 Prostaglandin E2 70500 Human Peripheral Blood Leukopak, Fresh 17555 EasySep™ Human Naïve CD4+ T Cell Isolation Kit II Catalog #: 10971 Product Name: ImmunoCult™ Human CD3/CD28 T Cell Activator Catalog #: 19058 Product Name: EasySep™ Human Monocyte Enrichment Kit without CD16 Depletion Catalog #: 72192 Product Name: Prostaglandin E2 Catalog #: 70500 Product Name: Human Peripheral Blood Leukopak, Fresh Catalog #: 17555 Product Name: EasySep™ Human Naïve CD4+ T Cell Isolation Kit II - ReferenceHoggatt J et al. (OCT 2013) Blood 122 17 2997--3000
Prostaglandin E2 enhances long-term repopulation but does not permanently alter inherent stem cell competitiveness.
Hematopoietic stem cell (HSC) transplantation is a lifesaving therapy for malignant and nonmalignant hematologic diseases and metabolic disorders. Although successful, hematopoietic transplantation can be hindered by inadequate stem cell number or poor engrafting efficiency. To overcome these deficits, we and others have previously reported the HSC-enhancing ability of a short-term exposure of prostaglandin E2 (PGE2); this strategy has now progressed to phase 1 clinical trials in double cord blood transplantation. To further analyze the short- and long-term effects of HSC exposure to PGE2, we followed the repopulation kinetics of PGE2-treated hematopoietic grafts through 5 serial transplantations and compared inherent long-term competitiveness in a HSC head-to-head secondary transplantation model. Treatment with PGE2 did not result in a long-term increase in HSC competitiveness, lineage bias, or enhanced proliferative potential, demonstrating that pulse exposure to PGE2 results in transient increases in HSC homing and engraftment potential. View PublicationCatalog #: Product Name: 72192 Prostaglandin E2 Catalog #: 72192 Product Name: Prostaglandin E2 - ReferenceGori JL et al. (SEP 2012) Blood 120 13 e35--44
Efficient generation, purification, and expansion of CD34(+) hematopoietic progenitor cells from nonhuman primate-induced pluripotent stem cells.
Induced pluripotent stem cell (iPSC) therapeutics are a promising treatment for genetic and infectious diseases. To assess engraftment, risk of neoplastic formation, and therapeutic benefit in an autologous setting, testing iPSC therapeutics in an appropriate model, such as the pigtail macaque (Macaca nemestrina; Mn), is crucial. Here, we developed a chemically defined, scalable, and reproducible specification protocol with bone morphogenetic protein 4, prostaglandin-E2 (PGE2), and StemRegenin 1 (SR1) for hematopoietic differentiation of Mn iPSCs. Sequential coculture with bone morphogenetic protein 4, PGE2, and SR1 led to robust Mn iPSC hematopoietic progenitor cell formation. The combination of PGE2 and SR1 increased CD34(+)CD38(-)Thy1(+)CD45RA(-)CD49f(+) cell yield by 6-fold. CD34(+)CD38(-)Thy1(+)CD45RA(-)CD49f(+) cells isolated on the basis of CD34 expression and cultured in SR1 expanded 3-fold and maintained this long-term repopulating HSC phenotype. Purified CD34(high) cells exhibited 4-fold greater hematopoietic colony-forming potential compared with unsorted hematopoietic progenitors and had bilineage differentiation potential. On the basis of these studies, we calculated the cell yields that must be achieved at each stage to meet a threshold CD34(+) cell dose that is required for engraftment in the pigtail macaque. Our protocol will support scale-up and testing of iPSC-derived CD34(high) cell therapies in a clinically relevant nonhuman primate model. View PublicationCatalog #: Product Name: 72192 Prostaglandin E2 72342 StemRegenin 1 72352 StemRegenin 1 (Hydrochloride) Catalog #: 72192 Product Name: Prostaglandin E2 Catalog #: 72342 Product Name: StemRegenin 1 Catalog #: 72352 Product Name: StemRegenin 1 (Hydrochloride) - ReferenceWoods N-B et al. (JUL 2011) Stem cells (Dayton, Ohio) 29 7 1158--64
Brief report: efficient generation of hematopoietic precursors and progenitors from human pluripotent stem cell lines.
By mimicking embryonic development of the hematopoietic system, we have developed an optimized in vitro differentiation protocol for the generation of precursors of hematopoietic lineages and primitive hematopoietic cells from human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSCs). Factors such as cytokines, extra cellular matrix components, and small molecules as well as the temporal association and concentration of these factors were tested on seven different human ESC and iPSC lines. We report the differentiation of up to 84% human CD45+ cells (average 41% ± 16%, from seven pluripotent lines) from the differentiation culture, including significant numbers of primitive CD45+/CD34+ and CD45+/CD34+/CD38- hematopoietic progenitors. Moreover, the numbers of hematopoietic progenitor cells generated, as measured by colony forming unit assays, were comparable to numbers obtained from fresh umbilical cord blood mononuclear cell isolates on a per CD45+ cell basis. Our approach demonstrates highly efficient generation of multipotent hematopoietic progenitors with among the highest efficiencies reported to date (CD45+/CD34+) using a single standardized differentiation protocol on several human ESC and iPSC lines. Our data add to the cumulating evidence for the existence of an in vitro derived precursor to the hematopoietic stem cell (HSC) with limited engrafting ability in transplanted mice but with multipotent hematopoietic potential. Because this protocol efficiently expands the preblood precursors and hematopoietic progenitors, it is ideal for testing novel factors for the generation and expansion of definitive HSCs with long-term repopulating ability. View PublicationCatalog #: Product Name: 72192 Prostaglandin E2 Catalog #: 72192 Product Name: Prostaglandin E2 - ReferenceHoggatt J et al. (MAY 2009) Blood 113 22 5444--55
Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation.
Adult hematopoietic stem cells (HSCs) are routinely used to reconstitute hematopoiesis after myeloablation; however, transplantation efficacy and multilineage reconstitution can be limited by inadequate HSC number, or poor homing, engraftment, or self-renewal. Here we report that mouse and human HSCs express prostaglandin E2 (PGE2) receptors, and that short-term ex vivo exposure of HSCs to PGE2 enhances their homing, survival, and proliferation, resulting in increased long-term repopulating cell (LTRC) and competitive repopulating unit (CRU) frequency. HSCs pulsed with PGE2 are more competitive, as determined by head-to-head comparison in a competitive transplantation model. Enhanced HSC frequency and competitive advantage is stable and maintained upon serial transplantation, with full multilineage reconstitution. PGE2 increases HSC CXCR4 mRNA and surface expression, enhances their migration to SDF-1 in vitro and homing to bone marrow in vivo, and stimulates HSC entry into and progression through cell cycle. In addition, PGE2 enhances HSC survival, associated with an increase in Survivin mRNA and protein expression and reduction in intracellular active caspase-3. Our results define novel mechanisms of action whereby PGE2 enhances HSC function and supports a strategy to use PGE2 to facilitate hematopoietic transplantation. View PublicationCatalog #: Product Name: 72192 Prostaglandin E2 Catalog #: 72192 Product Name: Prostaglandin E2 - ReferenceBoniface K et al. (MAR 2009) The Journal of experimental medicine 206 3 535--48
Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling.
Prostaglandins, particularly prostaglandin E2 (PGE2), play an important role during inflammation. This is exemplified by the clinical use of cyclooxygenase 2 inhibitors, which interfere with PGE2 synthesis, as effective antiinflammatory drugs. Here, we show that PGE2 directly promotes differentiation and proinflammatory functions of human and murine IL-17-producing T helper (Th17) cells. In human purified naive T cells, PGE2 acts via prostaglandin receptor EP2- and EP4-mediated signaling and cyclic AMP pathways to up-regulate IL-23 and IL-1 receptor expression. Furthermore, PGE2 synergizes with IL-1beta and IL-23 to drive retinoic acid receptor-related orphan receptor (ROR)-gammat, IL-17, IL-17F, CCL20, and CCR6 expression, which is consistent with the reported Th17 phenotype. While enhancing Th17 cytokine expression mainly through EP2, PGE2 differentially regulates interferon (IFN)-gamma production and inhibits production of the antiinflammatory cytokine IL-10 in Th17 cells predominantly through EP4. Furthermore, PGE2 is required for IL-17 production in the presence of antigen-presenting cells. Hence, the combination of inflammatory cytokines and noncytokine immunomodulators, such as PGE2, during differentiation and activation determines the ultimate phenotype of Th17 cells. These findings, together with the altered IL-12/IL-23 balance induced by PGE2 in dendritic cells, further highlight the crucial role of the inflammatory microenvironment in Th17 cell development and regulation. View PublicationCatalog #: Product Name: 72192 Prostaglandin E2 Catalog #: 72192 Product Name: Prostaglandin E2 - ReferenceNorth TE et al. (JUN 2007) Nature 447 7147 1007--11
Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis.
Haematopoietic stem cell (HSC) homeostasis is tightly controlled by growth factors, signalling molecules and transcription factors. Definitive HSCs derived during embryogenesis in the aorta-gonad-mesonephros region subsequently colonize fetal and adult haematopoietic organs. To identify new modulators of HSC formation and homeostasis, a panel of biologically active compounds was screened for effects on stem cell induction in the zebrafish aorta-gonad-mesonephros region. Here, we show that chemicals that enhance prostaglandin (PG) E2 synthesis increased HSC numbers, and those that block prostaglandin synthesis decreased stem cell numbers. The cyclooxygenases responsible for PGE2 synthesis were required for HSC formation. A stable derivative of PGE2 improved kidney marrow recovery following irradiation injury in the adult zebrafish. In murine embryonic stem cell differentiation assays, PGE2 caused amplification of multipotent progenitors. Furthermore, ex vivo exposure to stabilized PGE2 enhanced spleen colony forming units at day 12 post transplant and increased the frequency of long-term repopulating HSCs present in murine bone marrow after limiting dilution competitive transplantation. The conserved role for PGE2 in the regulation of vertebrate HSC homeostasis indicates that modulation of the prostaglandin pathway may facilitate expansion of HSC number for therapeutic purposes. View PublicationCatalog #: Product Name: 72192 Prostaglandin E2 72372 16,16-Dimethyl Prostaglandin E2 Catalog #: 72192 Product Name: Prostaglandin E2 Catalog #: 72372 Product Name: 16,16-Dimethyl Prostaglandin E2 - ReferenceSinha P et al. (MAY 2007) Cancer research 67 9 4507--13
Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells.
A causative relationship between chronic inflammation and cancer has been postulated for many years, and clinical observations and laboratory experiments support the hypothesis that inflammation contributes to tumor onset and progression. However, the precise mechanisms underlying the relationship are not known. We recently reported that the proinflammatory cytokine, interleukin-1beta, induces the accumulation and retention of myeloid-derived suppressor cells (MDSC), which are commonly found in many patients and experimental animals with cancer and are potent suppressors of adaptive and innate immunity. This finding led us to hypothesize that inflammation leads to cancer through the induction of MDSC, which inhibit immunosurveillance and thereby allow the unchecked persistence and proliferation of premalignant and malignant cells. We now report that host MDSC have receptors for prostaglandin E2 (PGE2) and that E-prostanoid receptor agonists, including PGE2, induce the differentiation of Gr1(+)CD11b(+) MDSC from bone marrow stem cells, whereas receptor antagonists block differentiation. BALB/c EP2 knockout mice inoculated with the spontaneously metastatic BALB/c-derived 4T1 mammary carcinoma have delayed tumor growth and reduced numbers of MDSC relative to wild-type mice, suggesting that PGE2 partially mediates MDSC induction through the EP2 receptor. Treatment of 4T1-tumor-bearing wild-type mice with the cyclooxygenase 2 inhibitor, SC58236, delays primary tumor growth and reduces MDSC accumulation, further showing that PGE2 induces MDSC and providing a therapeutic approach for reducing this tumor-promoting cell population. View PublicationCatalog #: Product Name: 72192 Prostaglandin E2 Catalog #: 72192 Product Name: Prostaglandin E2 - ReferenceBos CL et al. (JUL 2004) The international journal of biochemistry & cell biology 36 7 1187--205
Prostanoids and prostanoid receptors in signal transduction.
Prostanoids are arachidonic acid metabolites and are generally accepted to play pivotal functions in amongst others inflammation, platelet aggregation, and vasoconstriction/relaxation. Inhibition of their production with, for instance, aspirin has been used for over a century to combat a large variety of pathophysiological processes, with great clinical success. Hence, the cellular changes induced by prostanoids have been subject to an intensive research effort and especially prostanoid-dependent signal transduction has been extensively studied. In this review, we discuss the impact of the five basic prostanoids, TxA(2), PGF(2alpha), PGE(2), PGI(2), and PGD(2), via their receptors on cellular physiology. These inflammatory lipids may stimulate serpentine plasma membrane-localized receptors, which in turn affect major signaling pathways, such as the MAP kinase pathway and the protein kinase A pathway, finally resulting in altered cellular physiology. In addition, prostanoids may activate the PPARgamma members of the steroid/thyroid family of nuclear hormone receptors, which act as transcription factors and may thus directly influence gene transcription. Finally, evidence exists that prostanoids act as second messengers downstream of mitogen receptor activation, mediating events, such as cytoskeletal changes, maybe via direct interaction with GTPase activating proteins. The final cellular reaction to prostaglandin stimulation will most likely depend on combined effects of the above-mentioned levels of interaction between prostaglandins and their cellular receptors. View PublicationCatalog #: Product Name: 72192 Prostaglandin E2 Catalog #: 72192 Product Name: Prostaglandin E2 - ReferenceAbramovitz M et al. (JAN 2000) Biochimica et biophysica acta 1483 2 285--93
The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogs.
Stable cell lines that individually express the eight known human prostanoid receptors (EP(1), EP(2), EP(3), EP(4), DP, FP, IP and TP) have been established using human embryonic kidney (HEK) 293(EBNA) cells. These recombinant cell lines have been employed in radioligand binding assays to determine the equilibrium inhibitor constants of known prostanoid receptor ligands at these eight receptors. This has allowed, for the first time, an assessment of the affinity and selectivity of several novel compounds at the individual human prostanoid receptors. This information should facilitate interpretation of pharmacological studies that employ these ligands as tools to study human tissues and cell lines and should, therefore, result in a greater understanding of prostanoid receptor biology. View PublicationCatalog #: Product Name: 72192 Prostaglandin E2 Catalog #: 72192 Product Name: Prostaglandin E2
Shop By
Filter Results
Filters:
- Resource Type Reference Remove This Item
- Clear All
- Area of Interest
-
- Stem Cell Biology 1 item
- Brand
-
- EasySep 1 item
- ImmunoCult 1 item
- Cell Type
-
- Hematopoietic Stem and Progenitor Cells 1 item