Showing 1 - 12 of 16 results for "70008"
- ReferenceD. C. Johnson et al. (AUG 2018) Nature medicine 24 8 1151--1156
DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia.
Small-molecule inhibitors of the serine dipeptidases DPP8 and DPP9 (DPP8/9) induce a lytic form of cell death called pyroptosis in mouse and human monocytes and macrophages1,2. In mouse myeloid cells, Dpp8/9 inhibition activates the inflammasome sensor Nlrp1b, which in turn activates pro-caspase-1 to mediate cell death3, but the mechanism of DPP8/9 inhibitor-induced pyroptosis in human myeloid cells is not yet known. Here we show that the CARD-containing protein CARD8 mediates DPP8/9 inhibitor-induced pro-caspase-1-dependent pyroptosis in human myeloid cells. We further show that DPP8/9 inhibitors induce pyroptosis in the majority of human acute myeloid leukemia (AML) cell lines and primary AML samples, but not in cells from many other lineages, and that these inhibitors inhibit human AML progression in mouse models. Overall, this work identifies an activator of CARD8 in human cells and indicates that its activation by small-molecule DPP8/9 inhibitors represents a new potential therapeutic strategy for AML. View PublicationCatalog #: Product Name: 70008 Human Cord Blood CD34+ Cells, Frozen Catalog #: 70008 Product Name: Human Cord Blood CD34+ Cells, Frozen - ReferenceE. M. Everson et al. (JUL 2018) The journal of gene medicine 20 8-Jul e3028
Efficacy and safety of a clinically relevant foamy vector design in human hematopoietic repopulating cells.
BACKGROUND Previous studies have shown that foamy viral (FV) vectors are a promising alternative to gammaretroviral and lentiviral vectors and also that insulators can improve FV vector safety. However, in a previous analysis of insulator effects on FV vector safety, strong viral promoters were used to elicit genotoxic events. In the present study, we developed and analyzed the efficacy and safety of a high-titer, clinically relevant FV vector driven by the housekeeping promoter elongation factor-1alpha$ and insulated with an enhancer blocking A1 insulator (FV-EGW-A1). METHODS Human CD34+ cord blood cells were exposed to an enhanced green fluorescent protein expressing vector, FV-EGW-A1, at a multiplicity of infection of 10 and then maintained in vitro or transplanted into immunodeficient mice. Flow cytometry was used to measure engraftment and marking in vivo. FV vector integration sites were analyzed to assess safety. RESULTS FV-EGW-A1 resulted in high-marking, multilineage engraftment of human repopulating cells with no evidence of silencing. Engraftment was highly polyclonal with no clonal dominance and a promising safety profile based on integration site analysis. CONCLUSIONS An FV vector with an elongation factor-1alpha$ promoter and an A1 insulator is a promising vector design for use in the clinic. View PublicationCatalog #: Product Name: 70008 Human Cord Blood CD34+ Cells, Frozen Catalog #: 70008 Product Name: Human Cord Blood CD34+ Cells, Frozen - ReferenceStutz MD et al. (DEC 2017) Cell death and differentiation
Necroptotic signaling is primed in Mycobacterium tuberculosis-infected macrophages, but its pathophysiological consequence in disease is restricted.
Mixed lineage kinase domain-like (MLKL)-dependent necroptosis is thought to be implicated in the death of mycobacteria-infected macrophages, reportedly allowing escape and dissemination of the microorganism. Given the consequent interest in developing inhibitors of necroptosis to treat Mycobacterium tuberculosis (Mtb) infection, we used human pharmacologic and murine genetic models to definitively establish the pathophysiological role of necroptosis in Mtb infection. We observed that Mtb infection of macrophages remodeled the intracellular signaling landscape by upregulating MLKL, TNFR1, and ZBP1, whilst downregulating cIAP1, thereby establishing a strong pro-necroptotic milieu. However, blocking necroptosis either by deleting Mlkl or inhibiting RIPK1 had no effect on the survival of infected human or murine macrophages. Consistent with this, MLKL-deficiency or treatment of humanized mice with the RIPK1 inhibitor Nec-1s did not impact on disease outcomes in vivo, with mice displaying lung histopathology and bacterial burdens indistinguishable from controls. Therefore, although the necroptotic pathway is primed by Mtb infection, macrophage necroptosis is ultimately restricted to mitigate disease pathogenesis. We identified cFLIP upregulation that may promote caspase 8-mediated degradation of CYLD, and other necrosome components, as a possible mechanism abrogating Mtb's capacity to coopt necroptotic signaling. Variability in the capacity of these mechanisms to interfere with necroptosis may influence disease severity and could explain the heterogeneity of Mtb infection and disease. View PublicationCatalog #: Product Name: 70008 Human Cord Blood CD34+ Cells, Frozen Catalog #: 70008 Product Name: Human Cord Blood CD34+ Cells, Frozen - ReferenceScalzo-Inguanti K et al. (MAY 2017) Journal of leukocyte biology
A neutralizing anti-G-CSFR antibody blocks G-CSF-induced neutrophilia without inducing neutropenia in nonhuman primates.
Neutrophils are the most abundant WBCs and have an essential role in the clearance of pathogens. Tight regulation of neutrophil numbers and their recruitment to sites of inflammation is critical in maintaining a balanced immune response. In various inflammatory conditions, such as rheumatoid arthritis, vasculitis, cystic fibrosis, and inflammatory bowel disease, increased serum G-CSF correlates with neutrophilia and enhanced neutrophil infiltration into inflamed tissues. We describe a fully human therapeutic anti-G-CSFR antibody (CSL324) that is safe and well tolerated when administered via i.v. infusion to cynomolgus macaques. CSL324 was effective in controlling G-CSF-mediated neutrophilia when administered either before or after G-CSF. A single ascending-dose study showed CSL324 did not alter steady-state neutrophil numbers, even at doses sufficient to completely prevent G-CSF-mediated neutrophilia. Weekly infusions of CSL324 (%10 mg/kg) for 3 wk completely neutralized G-CSF-mediated pSTAT3 phosphorylation without neutropenia. Moreover, repeat dosing up to 100 mg/kg for 12 wk did not result in neutropenia at any point, including the 12-wk follow-up after the last infusion. In addition, CSL324 had no observable effect on basic neutrophil functions, such as phagocytosis and oxidative burst. These data suggest that targeting G-CSFR may provide a safe and effective means of controlling G-CSF-mediated neutrophilia as observed in various inflammatory diseases. View PublicationCatalog #: Product Name: 70008 Human Cord Blood CD34+ Cells, Frozen 70002 Human Bone Marrow CD34+ Cells, Frozen Catalog #: 70008 Product Name: Human Cord Blood CD34+ Cells, Frozen Catalog #: 70002 Product Name: Human Bone Marrow CD34+ Cells, Frozen - ReferenceAkoto C et al. (MAR 2017) Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology 47 3 351--360
Mast cells are permissive for rhinovirus replication: potential implications for asthma exacerbations.
BACKGROUND Human rhinoviruses (HRVs) are a major trigger of asthma exacerbations, with the bronchial epithelium being the major site of HRV infection and replication. Mast cells (MCs) play a key role in asthma where their numbers are increased in the bronchial epithelium with increasing disease severity. OBJECTIVE In view of the emerging role of MCs in innate immunity and increased localization to the asthmatic bronchial epithelium, we investigated whether HRV infection of MCs generated innate immune responses which were protective against infection. METHODS The LAD2 MC line or primary human cord blood-derived MCs (CBMCs) were infected with HRV or UV-irradiated HRV at increasing multiplicities of infection (MOI) without or with IFN-β or IFN-λ. After 24 h, innate immune responses were assessed by RT-qPCR and IFN protein release by ELISA. Viral replication was determined by RT-qPCR and virion release by TCID50 assay. RESULTS HRV infection of LAD2 MCs induced expression of IFN-β, IFN-λ and IFN-stimulated genes. However, LAD2 MCs were permissive for HRV replication and release of infectious HRV particles. Similar findings were observed with CBMCs. Neutralization of the type I IFN receptor had minimal effects on viral shedding, suggesting that endogenous type I IFN signalling offered limited protection against HRV. However, augmentation of these responses by exogenous IFN-β, but not IFN-λ, protected MCs against HRV infection. CONCLUSION AND CLINICAL RELEVANCE MCs are permissive for the replication and release of HRV, which is prevented by exogenous IFN-β treatment. Taken together, these findings suggest a novel mechanism whereby MCs may contribute to HRV-induced asthma exacerbations. View PublicationCatalog #: Product Name: 70008 Human Cord Blood CD34+ Cells, Frozen Catalog #: 70008 Product Name: Human Cord Blood CD34+ Cells, Frozen - ReferenceShah SN et al. (DEC 2016) PloS one 11 12 e0166657
Evaluation of Stem Cell-Derived Red Blood Cells as a Transfusion Product Using a Novel Animal Model.
Reliance on volunteer blood donors can lead to transfusion product shortages, and current liquid storage of red blood cells (RBCs) is associated with biochemical changes over time, known as 'the storage lesion'. Thus, there is a need for alternative sources of transfusable RBCs to supplement conventional blood donations. Extracorporeal production of stem cell-derived RBCs (stemRBCs) is a potential and yet untapped source of fresh, transfusable RBCs. A number of groups have attempted RBC differentiation from CD34+ cells. However, it is still unclear whether these stemRBCs could eventually be effective substitutes for traditional RBCs due to potential differences in oxygen carrying capacity, viability, deformability, and other critical parameters. We have generated ex vivo stemRBCs from primary human cord blood CD34+ cells and compared them to donor-derived RBCs based on a number of in vitro parameters. In vivo, we assessed stemRBC circulation kinetics in an animal model of transfusion and oxygen delivery in a mouse model of exercise performance. Our novel, chronically anemic, SCID mouse model can evaluate the potential of stemRBCs to deliver oxygen to tissues (muscle) under resting and exercise-induced hypoxic conditions. Based on our data, stem cell-derived RBCs have a similar biochemical profile compared to donor-derived RBCs. While certain key differences remain between donor-derived RBCs and stemRBCs, the ability of stemRBCs to deliver oxygen in a living organism provides support for further development as a transfusion product. View PublicationCatalog #: Product Name: 70008 Human Cord Blood CD34+ Cells, Frozen Catalog #: 70008 Product Name: Human Cord Blood CD34+ Cells, Frozen - ReferenceAhluwalia M et al. (JUN 2015) Journal of thrombosis and haemostasis : JTH 13 6 1103--12
The gene expression signature of anagrelide provides an insight into its mechanism of action and uncovers new regulators of megakaryopoiesis.
BACKGROUND Anagrelide is a cytoreductive agent used to lower platelet counts in essential thrombocythemia. Although the drug has been known to selectively inhibit megakaryopoiesis for many years, the molecular mechanism accounting for this activity is still unclear. OBJECTIVES AND METHODS To address this issue we have compared the global gene expression profiles of human hematopoietic cells treated ex-vivo with and without anagrelide while growing under megakaryocyte differentiation conditions, using high-density oligonucleotide microarrays. Gene expression data were validated by the quantitative polymerase chain reaction and mined to identify functional subsets and regulatory pathways. RESULTS We identified 328 annotated genes differentially regulated by anagrelide, including many genes associated with platelet functions and with the control of gene transcription. Prominent among the latter was TRIB3, whose expression increased in the presence of anagrelide. Pathway analysis revealed that anagrelide up-regulated genes that are under the control of the transcription factor ATF4, a known TRIB3 inducer. Notably, immunoblot analysis demonstrated that anagrelide induced the phosphorylation of eIF2α, which is an upstream regulator of ATF4, and increased ATF4 protein levels. Furthermore, salubrinal, an inhibitor of eIF2α dephosphorylation, increased the expression of ATF4-regulated genes and blocked megakaryocyte growth. CONCLUSIONS These findings link signaling through eIF2α/ATF4 to the anti-megakaryopoietic activity of anagrelide and identify new potential modulators of megakaryopoiesis. View PublicationCatalog #: Product Name: 70008 Human Cord Blood CD34+ Cells, Frozen Catalog #: 70008 Product Name: Human Cord Blood CD34+ Cells, Frozen - ReferenceMahbub AA et al. (DEC 2013) Anti-cancer agents in medicinal chemistry 13 10 1601--13
Differential effects of polyphenols on proliferation and apoptosis in human myeloid and lymphoid leukemia cell lines.
BACKGROUND Mortality rates for leukemia are high despite considerable improvements in treatment. Since polyphenols exert pro-apoptotic effects in solid tumors, our study investigated the effects of polyphenols in haematological malignancies. The effect of eight polyphenols (quercetin, chrysin, apigenin, emodin, aloe-emodin, rhein, cis-stilbene and trans-stilbene) were studied on cell proliferation, cell cycle and apoptosis in four lymphoid and four myeloid leukemic cells lines, together with normal haematopoietic control cells. METHODS Cellular proliferation was measured by CellTiter-Glo(®) luminescent assay; and cell cycle arrest was assessed using flow cytometry of propidium iodide stained cells. Apoptosis was investigated by caspase-3 activity assay using flow cytometry and apoptotic morphology was confirmed by Hoescht 33342 staining. RESULTS Emodin, quercetin, and cis-stilbene were the most effective polyphenols at decreasing cell viability (IC50 values of 5-22 μM, 8-33 μM, and 25-85 μM respectively) and inducing apoptosis (AP50 values (the concentration which 50% of cells undergo apoptosis) of 2-27 μM, 19-50 μM, and 8-50 μM respectively). Generally, lymphoid cell lines were more sensitive to polyphenol treatment compared to myeloid cell lines, however the most resistant myeloid (KG-1a and K562) cell lines were still found to respond to emodin and quercetin treatment at low micromolar levels. Non-tumor cells were less sensitive to all polyphenols compared to the leukemia cells. CONCLUSIONS These findings suggest that polyphenols have anti-tumor activity against leukemia cells with differential effects. Importantly, the differential sensitivity of emodin, quercetin, and cis-stilbene between leukemia and normal cells suggests that polyphenols are potential therapeutic agents for leukemia. View PublicationCatalog #: Product Name: 70008 Human Cord Blood CD34+ Cells, Frozen Catalog #: 70008 Product Name: Human Cord Blood CD34+ Cells, Frozen - ReferenceWang D et al. (OCT 2013) Transfusion 53 10 2134--40
Antibody-mediated glycophorin C coligation on K562 cells induces phosphatidylserine exposure and cell death in an atypical apoptotic process.
BACKGROUND Glycophorin C (GPC) is necessary in the maintenance of red blood cell structure. Severe autoimmune hemolytic anemia and hemolytic disease of the fetus and newborn (HDFN) have been associated with Gerbich (Ge) blood group system antigens expressed on GPC. Previous in vitro studies with cord blood progenitor cells have shown that anti-Ge suppresses erythropoiesis. STUDY DESIGN AND METHODS Here, we evaluated the K562 erythroleukemic cell line to study the cellular effects of a murine anti-GPC. Cell proliferation was evaluated after treatment with anti-GPC. Flow cytometry was used to evaluate exofacial phosphatidylserine (PS) expression and cell viability (propidium iodide binding). Cell morphology was evaluated under light microscopy with cytospin preparations stained with May-Grünwald Giemsa. RESULTS Anti-GPC dramatically inhibited K562 proliferation and increased PS expression, consistent with cytoplasmic blebbing, suggesting evidence of apoptosis. Z-VAD-FMK, an inhibitor of classical apoptosis, was unable to reverse the suppressive effect of anti-GPC. However, hemin was able to attenuate growth suppression. CONCLUSION Together, the data suggest that anti-GPC suppresses erythroid proliferation through the induction of nonclassical apoptosis. View PublicationCatalog #: Product Name: 70008 Human Cord Blood CD34+ Cells, Frozen Catalog #: 70008 Product Name: Human Cord Blood CD34+ Cells, Frozen - ReferenceSmith MS et al. (SEP 2010) Cell host & microbe 8 3 284--91
Granulocyte-colony stimulating factor reactivates human cytomegalovirus in a latently infected humanized mouse model.
Human cytomegalovirus (HCMV) is a significant cause of morbidity and mortality in organ transplant recipients. The use of granulocyte-colony stimulating factor (G-CSF)-mobilized stem cells from HCMV seropositive donors is suggested to double the risk of late-onset HCMV disease and chronic graft-versus-host disease in recipients when compared to conventional bone marrow transplantation with HCMV seropositive donors, although the etiology of the increased risk is unknown. To understand mechanisms of HCMV transmission in patients receiving G-CSF-mobilized blood products, we generated a NOD-scid IL2Rγ(c)(null)-humanized mouse model in which HCMV establishes latent infection in human hematopoietic cells. In this model, G-CSF induces the reactivation of latent HCMV in monocytes/macrophages that have migrated into organ tissues. In addition to establishing a humanized mouse model for systemic and latent HCMV infection, these results suggest that the use of G-CSF mobilized blood products from seropositive donors pose an elevated risk for HCMV transmission to recipients. View PublicationCatalog #: Product Name: 70008 Human Cord Blood CD34+ Cells, Frozen Catalog #: 70008 Product Name: Human Cord Blood CD34+ Cells, Frozen - ReferenceLeong SM et al. (OCT 2010) Blood 116 17 3286--96
Mutant nucleophosmin deregulates cell death and myeloid differentiation through excessive caspase-6 and -8 inhibition.
In up to one-third of patients with acute myeloid leukemia, a C-terminal frame-shift mutation results in abnormal and abundant cytoplasmic accumulation of the usually nucleoli-bound protein nucleophosmin (NPM), and this is thought to function in cancer pathogenesis. Here, we demonstrate a gain-of-function role for cytoplasmic NPM in the inhibition of caspase signaling. The NPM mutant specifically inhibits the activities of the cell-death proteases, caspase-6 and -8, through direct interaction with their cleaved, active forms, but not the immature procaspases. The cytoplasmic NPM mutant not only affords protection from death ligand-induced cell death but also suppresses caspase-6/-8-mediated myeloid differentiation. Our data hence provide a potential explanation for the myeloid-specific involvement of cytoplasmic NPM in the leukemogenesis of a large subset of acute myeloid leukemia. View PublicationCatalog #: Product Name: 09600 StemSpan™ SFEM 70008 Human Cord Blood CD34+ Cells, Frozen 02697 StemSpan™ CC110 Catalog #: 09600 Product Name: StemSpan™ SFEM Catalog #: 70008 Product Name: Human Cord Blood CD34+ Cells, Frozen Catalog #: 02697 Product Name: StemSpan™ CC110 - ReferenceGeisbert TW et al. (MAY 2010) Lancet (London, England) 375 9729 1896--905
Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study.
BACKGROUND We previously showed that small interfering RNAs (siRNAs) targeting the Zaire Ebola virus (ZEBOV) RNA polymerase L protein formulated in stable nucleic acid-lipid particles (SNALPs) completely protected guineapigs when administered shortly after a lethal ZEBOV challenge. Although rodent models of ZEBOV infection are useful for screening prospective countermeasures, they are frequently not useful for prediction of efficacy in the more stringent non-human primate models. We therefore assessed the efficacy of modified non-immunostimulatory siRNAs in a uniformly lethal non-human primate model of ZEBOV haemorrhagic fever. METHODS A combination of modified siRNAs targeting the ZEBOV L polymerase (EK-1 mod), viral protein (VP) 24 (VP24-1160 mod), and VP35 (VP35-855 mod) were formulated in SNALPs. A group of macaques (n=3) was given these pooled anti-ZEBOV siRNAs (2 mg/kg per dose, bolus intravenous infusion) after 30 min, and on days 1, 3, and 5 after challenge with ZEBOV. A second group of macaques (n=4) was given the pooled anti-ZEBOV siRNAs after 30 min, and on days 1, 2, 3, 4, 5, and 6 after challenge with ZEBOV. FINDINGS Two (66%) of three rhesus monkeys given four postexposure treatments of the pooled anti-ZEBOV siRNAs were protected from lethal ZEBOV infection, whereas all macaques given seven postexposure treatments were protected. The treatment regimen in the second study was well tolerated with minor changes in liver enzymes that might have been related to viral infection. INTERPRETATION This complete postexposure protection against ZEBOV in non-human primates provides a model for the treatment of ZEBOV-induced haemorrhagic fever. These data show the potential of RNA interference as an effective postexposure treatment strategy for people infected with Ebola virus, and suggest that this strategy might also be useful for treatment of other emerging viral infections. FUNDING Defense Threat Reduction Agency. View PublicationCatalog #: Product Name: 70008 Human Cord Blood CD34+ Cells, Frozen Catalog #: 70008 Product Name: Human Cord Blood CD34+ Cells, Frozen
Shop By
Filter Results
Filters:
- Area of Interest
-
- Cancer 3 items
- Drug Discovery and Toxicity Testing 1 item
- Immunology 3 items
- Stem Cell Biology 10 items
- Transplantation Research 1 item
- Brand
-
- ES-Cult 1 item
- StemSpan 3 items
- TeSR 1 item
- Cell Type
-
- Hematopoietic Stem and Progenitor Cells 14 items
- Myeloid Cells 1 item
- Pluripotent Stem Cells 1 item