Showing 1 - 12 of 44 results for "19052"
- ReferenceR. M. Robinson et al. (jan 2020) European journal of medicinal chemistry 186 111906
Tuning isoform selectivity and bortezomib sensitivity with a new class of alkenyl indene PDI inhibitor.
Protein disulfide isomerase (PDI, PDIA1) is an emerging therapeutic target in oncology. PDI inhibitors have demonstrated a unique propensity to selectively induce apoptosis in cancer cells and overcome resistance to existing therapies, although drug candidates have not yet progressed to the stage of clinical development. We recently reported the discovery of lead indene compound E64FC26 as a potent pan-PDI inhibitor that enhances the cytotoxic effects of proteasome inhibitors in panels of Multiple Myeloma (MM) cells and MM mouse models. An extensive medicinal chemistry program has led to the generation of a diverse library of indene-containing molecules with varying degrees of proteasome inhibitor potentiating activity. These compounds were generated by a novel nucleophilic aromatic ring cyclization and dehydration reaction from the precursor ketones. The results provide detailed structure activity relationships (SAR) around this indene pharmacophore and show a high degree of correlation between potency of PDI inhibition and bortezomib (Btz) potentiation in MM cells. Inhibition of PDI leads to ER and oxidative stress characterized by the accumulation of misfolded poly-ubiquitinated proteins and the induction of UPR biomarkers ATF4, CHOP, and Nrf2. This work characterizes the synthesis and SAR of a new chemical class and further validates PDI as a therapeutic target in MM as a single agent and in combination with proteasome inhibitors. View PublicationCatalog #: Product Name: 19052 EasySep™ Human CD4+ T Cell Enrichment Kit 18970 EasySep™ Mouse CD11b Positive Selection Kit II Catalog #: 19052 Product Name: EasySep™ Human CD4+ T Cell Enrichment Kit Catalog #: 18970 Product Name: EasySep™ Mouse CD11b Positive Selection Kit II - ReferenceT. Yamamoto et al. (apr 2019) Scientific reports 9 1 5917
STING agonists activate latently infected cells and enhance SIV-specific responses ex vivo in naturally SIV controlled cynomolgus macaques.
To achieve a functional cure for HIV, treatment regimens that eradicate latently HIV-infected cells must be established. For this, many groups have attempted to reactivate latently-infected cells to induce cytopathic effects and/or elicit cytotoxic T lymphocyte (CTL)/NK cell-mediated immune responses to kill these cells. We believe that not only the reactivation of latently-infected cells, but also the induction of strong CTL responses, would be required for this. Here, we used typical immune activators that target pattern recognition receptors (PRRs). For our experimental model, we identified eight SIV-infected cynomolgus monkeys that became natural controllers of viremia. Although plasma viral loads were undetectable, we could measure SIV-DNA by qPCR in peripheral blood mononuclear cells (PBMCs). Using these PBMCs, we screened 10 distinct PRR ligands to measure IFN-alpha and IFN-gamma production. Among these, STING ligands, cGAMP and c-di-AMP, and the TLR7/8 agonist R848 markedly increased cytokine levels. Both R848 and STING ligands could reactivate latently-infected cells in both cynomolgus monkeys and human PBMCs in vitro. Furthermore, c-di-AMP increased the frequency of SIV Gag-specific CD8+ T cells including polyfunctional CD8+ T cells, as compared to that in untreated control or R848-treated cells. Together, STING ligands might be candidates for HIV treatment. View PublicationCatalog #: Product Name: 19052 EasySep™ Human CD4+ T Cell Enrichment Kit Catalog #: 19052 Product Name: EasySep™ Human CD4+ T Cell Enrichment Kit - ReferenceA. A. Titov et al. (jul 2019) Journal of immunology (Baltimore, Md. : 1950) 203 2 338--348
Metformin Inhibits the Type 1 IFN Response in Human CD4+ T Cells.
In systemic lupus erythematosus, defective clearance of apoptotic debris and activation of innate cells result in a chronically activated type 1 IFN response, which can be measured in PBMCs of most patients. Metformin, a widely used prescription drug for Type 2 diabetes, has a therapeutic effect in several mouse models of lupus through mechanisms involving inhibition of oxidative phosphorylation and a decrease in CD4+ T cell activation. In this study, we report that in CD4+ T cells from human healthy controls and human systemic lupus erythematosus patients, metformin inhibits the transcription of IFN-stimulated genes (ISGs) after IFN-alpha treatment. Accordingly, metformin inhibited the phosphorylation of pSTAT1 (Y701) and its binding to IFN-stimulated response elements that control ISG expression. These effects were independent of AMPK activation or mTORC1 inhibition but were replicated using inhibitors of the electron transport chain respiratory complexes I, III, and IV. This indicates that mitochondrial respiration is required for ISG expression in CD4+ T cells and provides a novel mechanism by which metformin may exert a therapeutic effect in autoimmune diseases. View PublicationCatalog #: Product Name: 19052 EasySep™ Human CD4+ T Cell Enrichment Kit 15622 RosetteSep™ Human CD4 Depletion Cocktail Catalog #: 19052 Product Name: EasySep™ Human CD4+ T Cell Enrichment Kit Catalog #: 15622 Product Name: RosetteSep™ Human CD4 Depletion Cocktail - ReferenceS. Natesampillai et al. (jun 2019) Journal of immunology (Baltimore, Md. : 1950)
TRAILshort Protects against CD4 T Cell Death during Acute HIV Infection.
CD4 T cells from HIV-1 infected patients die at excessive rates compared to those from uninfected patients, causing immunodeficiency. We previously identified a dominant negative ligand that antagonizes the TRAIL-dependent pathway of cell death, which we called TRAILshort. Because the TRAIL pathway has been implicated in CD4 T cell death occurring during HIV-1 infection, we used short hairpin RNA knockdown, CRISPR deletion, or Abs specific for TRAILshort to determine the effect of inhibiting TRAILshort on the outcome of experimental acute HIV infection in vitro. Strikingly, all three approaches to TRAILshort deletion/inhibition enhanced HIV-induced death of both infected and uninfected human CD4 T cells. Thus, TRAILshort impacts T cell dynamics during HIV infection, and inhibiting TRAILshort causes more HIV-infected and uninfected bystander cells to die. TRAILshort is, therefore, a host-derived, host-adaptive mechanism to limit the effects of TRAIL-induced cell death. Further studies on the effects of TRAILshort in other disease states are warranted. View PublicationCatalog #: Product Name: 19052 EasySep™ Human CD4+ T Cell Enrichment Kit Catalog #: 19052 Product Name: EasySep™ Human CD4+ T Cell Enrichment Kit - ReferenceY. Nasser et al. (mar 2019) Scientific reports 9 1 3710
Activation of Peripheral Blood CD4+ T-Cells in IBS is not Associated with Gastrointestinal or Psychological Symptoms.
Immune activation may underlie the pathogenesis of irritable bowel syndrome (IBS), but the evidence is conflicting. We examined whether peripheral CD4+ T-cells from IBS patients demonstrated immune activation and changes in cytokine production. To gain mechanistic insight, we examined whether immune activation correlated with psychological stress and changing symptoms over time. IBS patients (n = 29) and healthy volunteers (HV; n = 29) completed symptom and psychological questionnaires. IBS patients had a significant increase in CD4+ T-cells expressing the gut homing marker integrin beta7 (p = 0.023) and lymphoid marker CD62L (p = 0.026) compared to HV. Furthermore, phytohaemagglutinin stimulated CD4+ T-cells from IBS-D patients demonstrated increased TNFalpha secretion when compared to HV (p = 0.044). Increased psychological scores in IBS did not correlate with TNFalpha production, while stress hormones inhibited cytokine secretion from CD4+ T-cells of HV in vitro. IBS symptoms, but not markers of immune activation, decreased over time. CD4+ T-cells from IBS-D patients exhibit immune activation, but this did not appear to correlate with psychological stress measurements or changing symptoms over time. This could suggest that immune activation is a surrogate of an initial trigger and/or ongoing parallel peripheral mechanisms. View PublicationCatalog #: Product Name: 19052 EasySep™ Human CD4+ T Cell Enrichment Kit Catalog #: 19052 Product Name: EasySep™ Human CD4+ T Cell Enrichment Kit - ReferenceC. Gu et al. (jul 2019) Journal of immunology (Baltimore, Md. : 1950) 203 2 389--399
Signaling Cascade through DC-ASGPR Induces Transcriptionally Active CREB for IL-10 Induction and Immune Regulation.
The types and magnitude of Ag-specific immune responses can be determined by the functional plasticity of dendritic cells (DCs). However, how DCs display functional plasticity and control host immune responses have not been fully understood. In this study, we report that ligation of DC-asialoglycoprotein receptor (DC-ASGPR), a C-type lectin receptor (CLR) expressed on human DCs, resulted in rapid activation of Syk, followed by PLCgamma2 and PKCdelta engagements. However, different from other Syk-coupled CLRs, including Dectin-1, signaling cascade through DC-ASGPR did not trigger NF-kappaB activation. Instead, it selectively activated MAPK ERK1/2 and JNK. Rapid and prolonged phosphorylation of ERK1/2 led to sequential activation of p90RSK and CREB, which consequently bound to IL10 promoter and initiated cytokine expression. In addition, DC-ASGPR ligation activated Akt, which differentially regulated the activities of GSK-3alpha/beta and beta-catenin and further contributed to IL-10 expression. Our observations demonstrate that DC-ASGPR induces IL-10 expression via an intrinsic signaling pathway, which provides a molecular explanation for DC-ASGPR-mediated programing of DCs to control host immune responses. View PublicationCatalog #: Product Name: 19251 EasySep™ Human Pan-DC Pre-Enrichment Kit 19052 EasySep™ Human CD4+ T Cell Enrichment Kit Catalog #: 19251 Product Name: EasySep™ Human Pan-DC Pre-Enrichment Kit Catalog #: 19052 Product Name: EasySep™ Human CD4+ T Cell Enrichment Kit - ReferenceE. Giuliani et al. (mar 2019) Scientific reports 9 1 4373
Hexamethylene bisacetamide impairs NK cell-mediated clearance of acute T lymphoblastic leukemia cells and HIV-1-infected T cells that exit viral latency.
The hexamethylene bisacetamide (HMBA) anticancer drug was dismissed due to limited efficacy in leukemic patients but it may re-enter into the clinics in HIV-1 eradication strategies because of its recently disclosed capacity to reactivate latent virus. Here, we investigated the impact of HMBA on the cytotoxicity of natural killer (NK) cells against acute T lymphoblastic leukemia (T-ALL) cells or HIV-1-infected T cells that exit from latency. We show that in T-ALL cells HMBA upmodulated MICB and ULBP2 ligands for the NKG2D activating receptor. In a primary CD4+ T cell-based latency model, HMBA did not reactivate HIV-1, yet enhanced ULBP2 expression on cells harboring virus reactivated by prostratin (PRO). However, HMBA reduced the expression of NKG2D and its DAP10 adaptor in NK cells, hence impairing NKG2D-mediated cytotoxicity and DAP10-dependent response to IL-15 stimulation. Alongside, HMBA dampened killing of T-ALL targets by IL-15-activated NK cells and impaired NK cell-mediated clearance of PRO-reactivated HIV-1+ cells. Overall, our results demonstrate a dominant detrimental effect of HMBA on the NKG2D pathway that crucially controls NK cell-mediated killing of tumors and virus-infected cells, providing one possible explanation for poor clinical outcome in HMBA-treated cancer patients and raising concerns for future therapeutic application of this drug. View PublicationCatalog #: Product Name: 19052 EasySep™ Human CD4+ T Cell Enrichment Kit Catalog #: 19052 Product Name: EasySep™ Human CD4+ T Cell Enrichment Kit - ReferenceR. Fromentin et al. (feb 2019) Nature communications 10 1 814
PD-1 blockade potentiates HIV latency reversal ex vivo in CD4+ T cells from ART-suppressed individuals.
HIV persists in latently infected CD4+ T cells during antiretroviral therapy (ART). Immune checkpoint molecules, including PD-1, are preferentially expressed at the surface of persistently infected cells. However, whether PD-1 plays a functional role in HIV latency and reservoir persistence remains unknown. Using CD4+ T cells from HIV-infected individuals, we show that the engagement of PD-1 inhibits viral production at the transcriptional level and abrogates T-cell receptor (TCR)-induced HIV reactivation in latently infected cells. Conversely, PD-1 blockade with the monoclonal antibody pembrolizumab enhances HIV production in combination with the latency reversing agent bryostatin without increasing T cell activation. Our results suggest that the administration of immune checkpoint blockers to HIV-infected individuals on ART may facilitate latency disruption. View PublicationCatalog #: Product Name: 17853 EasySep™ Human CD8 Positive Selection Kit II 17855 EasySep™ Human CD56 Positive Selection Kit II 19157 EasySep™ Human Memory CD4+ T Cell Enrichment Kit 19052 EasySep™ Human CD4+ T Cell Enrichment Kit Catalog #: 17853 Product Name: EasySep™ Human CD8 Positive Selection Kit II Catalog #: 17855 Product Name: EasySep™ Human CD56 Positive Selection Kit II Catalog #: 19157 Product Name: EasySep™ Human Memory CD4+ T Cell Enrichment Kit Catalog #: 19052 Product Name: EasySep™ Human CD4+ T Cell Enrichment Kit - ReferenceAlbert BJ et al. (AUG 2017) Scientific reports 7 1 7456
Combinations of isoform-targeted histone deacetylase inhibitors and bryostatin analogues display remarkable potency to activate latent HIV without global T-cell activation.
Current antiretroviral therapy (ART) for HIV/AIDS slows disease progression by reducing viral loads and increasing CD4 counts. Yet ART is not curative due to the persistence of CD4+ T-cell proviral reservoirs that chronically resupply active virus. Elimination of these reservoirs through the administration of synergistic combinations of latency reversing agents (LRAs), such as histone deacetylase (HDAC) inhibitors and protein kinase C (PKC) modulators, provides a promising strategy to reduce if not eradicate the viral reservoir. Here, we demonstrate that largazole and its analogues are isoform-targeted histone deacetylase inhibitors and potent LRAs. Significantly, these isoform-targeted HDAC inhibitors synergize with PKC modulators, namely bryostatin-1 analogues (bryologs). Implementation of this unprecedented LRA combination induces HIV-1 reactivation to unparalleled levels and avoids global T-cell activation within resting CD4+ T-cells. View PublicationCatalog #: Product Name: 19052 EasySep™ Human CD4+ T Cell Enrichment Kit 17861 EasySep™ Human Pan-CD25 Positive Selection and Depletion Kit Catalog #: 19052 Product Name: EasySep™ Human CD4+ T Cell Enrichment Kit Catalog #: 17861 Product Name: EasySep™ Human Pan-CD25 Positive Selection and Depletion Kit - ReferenceHuang S-H et al. (JAN 2018) The Journal of clinical investigation
Latent HIV reservoirs exhibit inherent resistance to elimination by CD8+ T cells.
The presence of persistent, latent HIV reservoirs in CD4+ T cells obstructs current efforts to cure infection. The so-called kick-and-kill paradigm proposes to purge these reservoirs by combining latency-reversing agents with immune effectors such as cytotoxic T lymphocytes. Support for this approach is largely based on success in latency models, which do not fully reflect the makeup of latent reservoirs in individuals on long-term antiretroviral therapy (ART). Recent studies have shown that CD8+ T cells have the potential to recognize defective proviruses, which comprise the vast majority of all infected cells, and that the proviral landscape can be shaped over time due to in vivo clonal expansion of infected CD4+ T cells. Here, we have shown that treating CD4+ T cells from ART-treated individuals with combinations of potent latency-reversing agents and autologous CD8+ T cells consistently reduced cell-associated HIV DNA, but failed to deplete replication-competent virus. These CD8+ T cells recognized and potently eliminated CD4+ T cells that were newly infected with autologous reservoir virus, ruling out a role for both immune escape and CD8+ T cell dysfunction. Thus, our results suggest that cells harboring replication-competent HIV possess an inherent resistance to CD8+ T cells that may need to be addressed to cure infection. View PublicationCatalog #: Product Name: 19052 EasySep™ Human CD4+ T Cell Enrichment Kit Catalog #: 19052 Product Name: EasySep™ Human CD4+ T Cell Enrichment Kit - ReferencePark RJ et al. (DEC 2016) Nature genetics
A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors.
Host proteins are essential for HIV entry and replication and can be important nonviral therapeutic targets. Large-scale RNA interference (RNAi)-based screens have identified nearly a thousand candidate host factors, but there is little agreement among studies and few factors have been validated. Here we demonstrate that a genome-wide CRISPR-based screen identifies host factors in a physiologically relevant cell system. We identify five factors, including the HIV co-receptors CD4 and CCR5, that are required for HIV infection yet are dispensable for cellular proliferation and viability. Tyrosylprotein sulfotransferase 2 (TPST2) and solute carrier family 35 member B2 (SLC35B2) function in a common pathway to sulfate CCR5 on extracellular tyrosine residues, facilitating CCR5 recognition by the HIV envelope. Activated leukocyte cell adhesion molecule (ALCAM) mediates cell aggregation, which is required for cell-to-cell HIV transmission. We validated these pathways in primary human CD4(+) T cells through Cas9-mediated knockout and antibody blockade. Our findings indicate that HIV infection and replication rely on a limited set of host-dispensable genes and suggest that these pathways can be studied for therapeutic intervention. View PublicationCatalog #: Product Name: 19052 EasySep™ Human CD4+ T Cell Enrichment Kit 19662 EasySep™ Direct Human CD4+ T Cell Isolation Kit Catalog #: 19052 Product Name: EasySep™ Human CD4+ T Cell Enrichment Kit Catalog #: 19662 Product Name: EasySep™ Direct Human CD4+ T Cell Isolation Kit - ReferenceVanwalscappel B et al. (NOV 2016) Virology 500 247--258
Genetic and phenotypic analyses of sequential vpu alleles from HIV-infected IFN-treated patients.
Treatment of HIV-infected patients with IFN-α results in significant, but clinically insufficient, reductions of viremia. IFN induces the expression of several antiviral proteins including BST-2, which inhibits HIV by multiple mechanisms. The viral protein Vpu counteracts different effects of BST-2. We thus asked if Vpu proteins from IFN-treated patients displayed improved anti-BST-2 activities as compared to Vpu from baseline. Deep-sequencing analyses revealed that in five of seven patients treated by IFN-α for a concomitant HCV infection in the absence of antiretroviral drugs, the dominant Vpu sequences differed before and during treatment. In three patients, vpu alleles that emerged during treatment improved virus replication in the presence of IFN-α, and two of them conferred improved virus budding from cells expressing BST-2. Differences were observed for the ability to down-regulate CD4, while all Vpu variants potently down-modulated BST-2 from the cell surface. This report discloses relevant consequences of IFN-treatment on HIV properties. View PublicationCatalog #: Product Name: 19052 EasySep™ Human CD4+ T Cell Enrichment Kit 85450 SepMate™-50 (IVD) 86450 SepMate™-50 (RUO) Catalog #: 19052 Product Name: EasySep™ Human CD4+ T Cell Enrichment Kit Catalog #: 85450 Product Name: SepMate™-50 (IVD) Catalog #: 86450 Product Name: SepMate™-50 (RUO)
Shop By
Filter Results
Filters:
- Area of Interest
-
- HIV 1 item
- Immunology 31 items
- Stem Cell Biology 2 items
- Brand
-
- EasySep 39 items
- ImmunoCult 1 item
- RoboSep 2 items
- RosetteSep 1 item
- TeSR 1 item
- Cell Type
-
- Hematopoietic Stem and Progenitor Cells 1 item
- Monocytes 6 items
- NK Cells 2 items
- Pluripotent Stem Cells 1 item
- T Cells 13 items
- T Cells, CD4+ 9 items