Showing 1 - 10 of 10 results for "15129"
- ReferenceHideshima T et al. (JAN 2017) Blood
p53-related protein kinase confers poor prognosis and represents a novel therapeutic target in multiple myeloma.
p53-related protein kinase (TP53RK, also known as PRPK) is an upstream kinase which phosphorylates (Ser15) and mediates p53 activity. Here we show that TP53RK confers poor prognosis in MM patients; and conversely, that TP53RK knockdown inhibits p53 phosphorylation and triggers multiple myeloma (MM) cell apoptosis, associated with downregulation of c-Myc and E2F-1-mediated upregulation of pro-apoptotic Bim. We further demonstrate that TP53RK downregulation also triggers growth inhibition in p53-deficient (KMS-11) and p53-mutant (U266) MM cell lines, and identify novel downstream targets of TP53RK including ribonucleotide reductase-1, telomerase reverse transcriptase, and cyclin dependent kinase inhibitor 2C (CDKN2C). Our previous studies showed that immunomodulatory drugs (IMiDs) downregulate p21 and trigger apoptosis in wt-p53 MM.1S cells, Importantly we here demonstrate by pull-down, nuclear magnetic resonance spectroscopy, differential scanning fluorimetry, and isothermal titration calorimetry, that IMiDs bind and inhibit TP53RK, with biologic sequelae similar to TP53RK knockdown. Our studies therefore demonstrate that either genetic or pharmacological inhibition of TP53RK triggers MM cell apoptosis via both p53-Myc axis-dependent and -independent pathways, validating TP53RK as a novel therapeutic target in patients with poor prognosis MM. View PublicationCatalog #: Product Name: 15129 RosetteSep™ Human Multiple Myeloma Cell Enrichment Cocktail Catalog #: 15129 Product Name: RosetteSep™ Human Multiple Myeloma Cell Enrichment Cocktail - ReferenceHideshima T et al. (OCT 2016) Proceedings of the National Academy of Sciences of the United States of America
Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma.
Multiple myeloma (MM) has proven clinically susceptible to modulation of pathways of protein homeostasis. Blockade of proteasomal degradation of polyubiquitinated misfolded proteins by the proteasome inhibitor bortezomib (BTZ) achieves responses and prolongs survival in MM, but long-term treatment with BTZ leads to drug-resistant relapse in most patients. In a proof-of-concept study, we previously demonstrated that blocking aggresomal breakdown of polyubiquitinated misfolded proteins with the histone deacetylase 6 (HDAC6) inhibitor tubacin enhances BTZ-induced cytotoxicity in MM cells in vitro. However, these foundational studies were limited by the pharmacologic liabilities of tubacin as a chemical probe with only in vitro utility. Emerging from a focused library synthesis, a potent, selective, and bioavailable HDAC6 inhibitor, WT161, was created to study the mechanism of action of HDAC6 inhibition in MM alone and in combination with BTZ. WT161 in combination with BTZ triggers significant accumulation of polyubiquitinated proteins and cell stress, followed by caspase activation and apoptosis. More importantly, this combination treatment was effective in BTZ-resistant cells and in the presence of bone marrow stromal cells, which have been shown to mediate MM cell drug resistance. The activity of WT161 was confirmed in our human MM cell xenograft mouse model and established the framework for clinical trials of the combination treatment to improve patient outcomes in MM. View PublicationCatalog #: Product Name: 15129 RosetteSep™ Human Multiple Myeloma Cell Enrichment Cocktail Catalog #: 15129 Product Name: RosetteSep™ Human Multiple Myeloma Cell Enrichment Cocktail - ReferenceLi T et al. ( 2016) Scientific reports 6 27055
Immuno-targeting the multifunctional CD38 using nanobody.
CD38, as a cell surface antigen is highly expressed in several hematologic malignancies including multiple myeloma (MM) and has been proven to be a good target for immunotherapy of the disease. CD38 is also a signaling enzyme responsible for the metabolism of two novel calcium messenger molecules. To be able to target this multifunctional protein, we generated a series of nanobodies against CD38 with high affinities. Crystal structures of the complexes of CD38 with the nanobodies were solved, identifying three separate epitopes on the carboxyl domain. Chromobodies, engineered by tagging the nanobody with fluorescence proteins, provide fast, simple and versatile tools for quantifying CD38 expression. Results confirmed that CD38 was highly expressed in malignant MM cells compared with normal white blood cells. The immunotoxin constructed by splicing the nanobody with a bacterial toxin, PE38 shows highly selective cytotoxicity against patient-derived MM cells as well as the cell lines, with half maximal effective concentration reaching as low as 10(-11) molar. The effectiveness of the immunotoxin can be further increased by stimulating CD38 expression using retinoid acid. These results set the stage for the development of clinical therapeutics as well as diagnostic screening for myeloma. View PublicationCatalog #: Product Name: 15129 RosetteSep™ Human Multiple Myeloma Cell Enrichment Cocktail Catalog #: 15129 Product Name: RosetteSep™ Human Multiple Myeloma Cell Enrichment Cocktail - ReferenceStreetly MJ et al. (MAY 2010) Blood 115 19 3939--48
GCS-100, a novel galectin-3 antagonist, modulates MCL-1, NOXA, and cell cycle to induce myeloma cell death.
GCS-100 is a galectin-3 antagonist with an acceptable human safety profile that has been demonstrated to have an antimyeloma effect in the context of bortezomib resistance. In the present study, the mechanisms of action of GCS-100 are elucidated in myeloma cell lines and primary tumor cells. GCS-100 induced inhibition of proliferation, accumulation of cells in sub-G(1) and G(1) phases, and apoptosis with activation of both caspase-8 and -9 pathways. Dose- and time-dependent decreases in MCL-1 and BCL-X(L) levels also occurred, accompanied by a rapid induction of NOXA protein, whereas BCL-2, BAX, BAK, BIM, BAD, BID, and PUMA remained unchanged. The cell-cycle inhibitor p21(Cip1) was up-regulated by GCS-100, whereas the procycling proteins CYCLIN E2, CYCLIN D2, and CDK6 were all reduced. Reduction in signal transduction was associated with lower levels of activated IkappaBalpha, IkappaB kinase, and AKT as well as lack of IkappaBalpha and AKT activation after appropriate cytokine stimulation (insulin-like growth factor-1, tumor necrosis factor-alpha). Primary myeloma cells showed a direct reduction in proliferation and viability. These data demonstrate that the novel therapeutic molecule, GCS-100, is a potent modifier of myeloma cell biology targeting apoptosis, cell cycle, and intracellular signaling and has potential for myeloma therapy. View PublicationCatalog #: Product Name: 15129 RosetteSep™ Human Multiple Myeloma Cell Enrichment Cocktail Catalog #: 15129 Product Name: RosetteSep™ Human Multiple Myeloma Cell Enrichment Cocktail - ReferencePerez LE et al. (MAR 2010) European journal of haematology 84 3 212--22
Bortezomib restores stroma-mediated APO2L/TRAIL apoptosis resistance in multiple myeloma.
OBJECTIVES: Hematopoietic stroma promotes resistance to immune control by APO2L/TRAIL in multiple myeloma (MM) cells in part by increasing synthesis of the anti-apoptotic protein c-FLIP. Here, we tested whether bortezomib can reverse the APO2L/TRAIL environmental mediated-immune resistance (EM-IR). MATERIAL AND METHODS: MM cell lines (RPMI 8226 and U266) and CD138+ patient's MM cells were directly adhered to HS5 stroma exposed to HS5 or bone marrow stroma of patients with MM released soluble factors in a transwell system. Cells were treated with either APO2L/TRAIL (10 ng/mL), bortezomib (10 nm) or both. RESULTS: Pretreatment with bortezomib effectively overcomes APO2L/TRAIL apoptosis resistance in myeloma cell lines and in CD138+ cells while directly adhered or in transwell assay. Bortezomib was not cytotoxic to HS5 stroma cells and only altered monocyte chemotactic protein-2-3 and IL-10 levels in the stroma-myeloma milieu. Factors released by HS5 stroma increased expression of c-FLIP, induced STAT-3 and ERK phosphorylation and reduced DR4 receptor expression in MM cells. HS5 stroma-released factor(s) induced NF-kappaB activation after 20 h exposure in association with an enhanced c-FLIP transcription. Bortezomib effectively reduced c-FLIP protein expression without affecting other proteins. Bortezomib also increased DR4 and DR5 expression in the presence of stroma. CONCLUSIONS: These findings provide the rationale to combine bortezomib and APO2L/TRAIL to disrupt the influence of the stroma microenvironment on MM cells. View PublicationCatalog #: Product Name: 15129 RosetteSep™ Human Multiple Myeloma Cell Enrichment Cocktail Catalog #: 15129 Product Name: RosetteSep™ Human Multiple Myeloma Cell Enrichment Cocktail - ReferenceHideshima T et al. (MAY 2006) Blood 107 10 4053--62
Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells.
Perifosine is a synthetic novel alkylphospholipid, a new class of antitumor agents which targets cell membranes and inhibits Akt activation. Here we show that baseline phosphorylation of Akt in multiple myeloma (MM) cells is completely inhibited by perifosine [octadecyl-(1,1-dimethyl-piperidinio-4-yl)-phosphate] in a time- and dose-dependent fashion, without inhibiting phosphoinositide-dependent protein kinase 1 phosphorylation. Perifosine induces significant cytotoxicity in both MM cell lines and patient MM cells resistant to conventional therapeutic agents. Perifosine does not induce cytotoxicity in peripheral blood mononuclear cells. Neither exogenous interleukin-6 (IL-6) nor insulinlike growth factor 1 (IGF-1) overcomes Perifosine-induced cytotoxicity. Importantly, Perifosine induces apoptosis even of MM cells adherent to bone marrow stromal cells. Perifosine triggers c-Jun N-terminal kinase (JNK) activation, followed by caspase-8/9 and poly (ADP)-ribose polymerase cleavage. Inhibition of JNK abrogates perifosine-induced cytotoxicity, suggesting that JNK plays an essential role in perifosine-induced apoptosis. Interestingly, phosphorylation of extracellular signal-related kinase (ERK) is increased by perifosine; conversely, MEK inhibitor synergistically enhances Perifosine-induced cytotoxicity in MM cells. Furthermore, perifosine augments dexamethasone, doxorubicin, melphalan, and bortezomib-induced MM cell cytotoxicity. Finally, perifosine demonstrates significant antitumor activity in a human plasmacytoma mouse model, associated with down-regulation of Akt phosphorylation in tumor cells. Taken together, our data provide the rationale for clinical trials of perifosine to improve patient outcome in MM. View PublicationCatalog #: Product Name: 15129 RosetteSep™ Human Multiple Myeloma Cell Enrichment Cocktail Catalog #: 15129 Product Name: RosetteSep™ Human Multiple Myeloma Cell Enrichment Cocktail - ReferenceHideshima T et al. (DEC 2003) Cancer research 63 23 8428--36
Antitumor activity of lysophosphatidic acid acyltransferase-beta inhibitors, a novel class of agents, in multiple myeloma.
In this study, we examined the effects of isoform-specific functional inhibitors of lysophosphatidic acid acyltransferase (LPAAT), which converts lysophosphatidic acid to phosphatidic acid, on multiple myeloma (MM) cell growth and survival. The LPAAT-beta inhibitors CT-32176, CT-32458, and CT-32615 induced textgreater95% growth inhibition (P textless 0.01) in MM.1S, U266, and RPMI8226 MM cell lines, as well as MM cells from patients (IC(50), 50-200 nM). We further characterized this LPAAT-beta inhibitory effect using CT-32615, the most potent inhibitor of MM cell growth. CT-32615 triggered apoptosis in MM cells via caspase-8, caspase-3, caspase-7, and poly (ADP-ribose) polymerase cleavage. Neither interleukin 6 nor insulin-like growth factor I inhibited CT-32615-induced apoptosis. Dexamethasone and immunomodulatory derivatives of thalidomide (IMiDs), but not proteasome inhibitor PS-341, augmented MM cell apoptosis triggered by LPAAT-beta inhibitors. CT-32615-induced apoptosis was associated with phosphorylation of p53 and c-Jun NH(2)-terminal kinase (JNK); conversely, JNK inhibitor SP600125 and dominant-negative JNK inhibited CT-32615-induced apoptosis. Importantly, CT-32615 inhibited tumor necrosis factor-alpha-triggered nuclear factor-kappaB activation but did not affect either tumor necrosis factor-alpha-induced p38 mitogen-activated protein kinase phosphorylation or interleukin 6-triggered signal transducers and activators of transcription 3 phosphorylation. Finally, although binding of MM cells to bone marrow stromal cells augments MM cell growth and protects against dexamethasone-induced apoptosis, CT-32615 induced apoptosis even of adherent MM cells. Our data therefore demonstrate for the first time that inhibiting LPAAT-beta induces cytotoxicity in MM cells in the bone marrow milieu, providing the framework for clinical trials of these novel agents in MM. View PublicationCatalog #: Product Name: 15129 RosetteSep™ Human Multiple Myeloma Cell Enrichment Cocktail Catalog #: 15129 Product Name: RosetteSep™ Human Multiple Myeloma Cell Enrichment Cocktail - ReferenceHayashi T et al. (AUG 2003) Blood 102 4 1435--42
Ex vivo induction of multiple myeloma-specific cytotoxic T lymphocytes.
Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by immunosuppression. In this study, we identified factors in patients' bone marrow (BM) sera inhibiting autologous anti-MM immunity and developed an ex vivo strategy for inducing MM-specific cytotoxic T lymphocytes (CTLs). We found that sera from BM of MM patients inhibited induction of dendritic cells (DCs), evidenced by both phenotype and only weak stimulation of T-cell proliferation. Anti-vascular endothelial growth factor (anti-VEGF) and/or anti-interleukin 6 (anti-IL-6) antibodies neutralized this inhibitory effect, confirming that VEGF and IL-6, at least in part, mediate immunosuppression in MM patients. To induce MM-specific CTLs ex vivo, immature DCs were generated by culture of adherent mononuclear cells in medium containing granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4 for 5 days and then cocultured with apoptotic MM bodies in the presence of tumor necrosis factor alpha (TNF-alpha) for 3 days to induce their maturation. Autologous BM or peripheral blood mononuclear cells were stimulated weekly with these DCs, and cytotoxicity was examined against the MM cells used to pulse DCs. DCs cultured with apoptotic bodies stimulated significantly greater T-cell proliferation (stimulation index [SI] = 23.2 at a T-DC ratio of 360:1) than T cells stimulated by MM cells only (SI = 5.6), DCs only (SI = 9.3), or MM lysate-pulsed DCs (SI = 13.5). These CTLs from MM patients demonstrated specific cytotoxicity (24.7% at the effector-target [E/T] ratio of 40:1) against autologous primary MM cells. These studies therefore show that CTLs from MM patients can recognize and lyse autologous tumor cells and provide the framework for novel immunotherapy to improve patient outcome in MM. View PublicationCatalog #: Product Name: 15129 RosetteSep™ Human Multiple Myeloma Cell Enrichment Cocktail Catalog #: 15129 Product Name: RosetteSep™ Human Multiple Myeloma Cell Enrichment Cocktail - ReferencePodar K et al. (FEB 2003) The Journal of biological chemistry 278 8 5794--801
Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells.
Caveolae, specialized flask-shaped lipid rafts on the cell surface, are composed of cholesterol, sphingolipids, and structural proteins termed caveolins; functionally, these plasma membrane microdomains have been implicated in signal transduction and transmembrane transport. In the present study, we examined the role of caveolin-1 in multiple myeloma cells. We show for the first time that caveolin-1, which is usually absent in blood cells, is expressed in multiple myeloma cells. Analysis of myeloma cell-derived plasma membrane fractions shows that caveolin-1 is co-localized with interleukin-6 receptor signal transducing chain gp130 and with insulin-like growth factor-I receptor. Cholesterol depletion by beta-cyclodextrin results in the loss of caveola structure in myeloma cells, as shown by transmission electron microscopy, and loss of caveolin-1 function. Interleukin-6 and insulin-like growth factor-I, growth and survival factors in multiple myeloma, induce caveolin-1 phosphorylation, which is abrogated by pre-treatment with beta-cyclodextrin. Importantly, inhibition of caveolin-1 phosphorylation blocks both interleukin-6-induced protein complex formation with caveolin-1 and downstream activation of the phosphatidylinositol 3-kinase/Akt-1 pathway. beta-Cyclodextrin also blocks insulin-like growth factor-I-induced tyrosine phosphorylation of insulin-responsive substrate-1 and downstream activation of the phosphatidylinositol 3-kinase/Akt-1 pathway. Therefore, cholesterol depletion by beta-cyclodextrin abrogates both interleukin-6- and insulin-like growth factor-I-triggered multiple myeloma cell survival via negative regulation of caveolin-1. Taken together, this study identifies caveolin-1 and other structural membrane components as potential new therapeutic targets in multiple myeloma. View PublicationCatalog #: Product Name: 15129 RosetteSep™ Human Multiple Myeloma Cell Enrichment Cocktail Catalog #: 15129 Product Name: RosetteSep™ Human Multiple Myeloma Cell Enrichment Cocktail - ReferenceHideshima T et al. (FEB 2003) Blood 101 4 1530--4
Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341.
We have recently shown that proteasome inhibitor PS-341 induces apoptosis in drug-resistant multiple myeloma (MM) cells, inhibits binding of MM cells in the bone marrow microenvironment, and inhibits cytokines mediating MM cell growth, survival, drug resistance, and migration in vitro. PS-341 also inhibits human MM cell growth and prolongs survival in a SCID mouse model. Importantly, PS-341 has achieved remarkable clinical responses in patients with refractory relapsed MM. We here demonstrate molecular mechanisms whereby PS-341 mediates anti-MM activity by inducing p53 and MDM2 protein expression; inducing the phosphorylation (Ser15) of p53 protein; activating c-Jun NH(2)-terminal kinase (JNK), caspase-8, and caspase-3; and cleaving the DNA protein kinase catalytic subunit, ATM, and MDM2. Inhibition of JNK activity abrogates PS-341-induced MM cell death. These studies identify molecular targets of PS-341 and provide the rationale for the development of second-generation, more targeted therapies. View PublicationCatalog #: Product Name: 15129 RosetteSep™ Human Multiple Myeloma Cell Enrichment Cocktail Catalog #: 15129 Product Name: RosetteSep™ Human Multiple Myeloma Cell Enrichment Cocktail