Showing 1 - 12 of 41 results for "15028"
- ReferenceY. Gong et al. (mar 2020) Scientific reports 10 1 3835
Novel elvitegravir nanoformulation for drug delivery across the blood-brain barrier to achieve HIV-1 suppression in the CNS macrophages.
The use of antiretroviral therapy (ART) has remarkably decreased the morbidity associated with HIV-1 infection, however, the prevalence of HIV-1-associated neurocognitive disorders (HAND) is still increasing. The blood-brain barrier (BBB) is the major impediment for penetration of antiretroviral drugs, causing therapeutics to reach only suboptimal level to the brain. Conventional antiretroviral drug regimens are not sufficient to improve the treatment outcomes of HAND. In our recent report, we have developed a poloxamer-PLGA nanoformulation loaded with elvitegravir (EVG), a commonly used antiretroviral drug. The nanoformulated EVG is capable of elevating intracellular drug uptake and simultaneously enhance viral suppression in HIV-1-infected macrophages. In this work, we identified the clinical parameters including stability, biocompatibility, protein corona, cellular internalization pathway of EVG nanoformulation for its potential clinical translation. We further assessed the ability of this EVG nanoformulation to cross the in vitro BBB model and suppress the HIV-1 in macrophage cells. Compared with EVG native drug, our EVG nanoformulation demonstrated an improved BBB model penetration cross the in vitro BBB model and an enhanced HIV-1 suppression in HIV-1-infected human monocyte-derived macrophages after crossing the BBB model without altering the BBB model integrity. Overall, this is an innovative and optimized treatment strategy that has a potential for therapeutic interventions in reducing HAND. View PublicationCatalog #: Product Name: 15028 RosetteSep™ Human Monocyte Enrichment Cocktail Catalog #: 15028 Product Name: RosetteSep™ Human Monocyte Enrichment Cocktail - ReferenceT. W.-M. Fan et al. (jun 2020) Metabolites 10 6
Resolving Metabolic Heterogeneity in Experimental Models of the Tumor Microenvironment from a Stable Isotope Resolved Metabolomics Perspective.
The tumor microenvironment (TME) comprises complex interactions of multiple cell types that determines cell behavior and metabolism such as nutrient competition and immune suppression. We discuss the various types of heterogeneity that exist in solid tumors, and the complications this invokes for studies of TME. As human subjects and in vivo model systems are complex and difficult to manipulate, simpler 3D model systems that are compatible with flexible experimental control are necessary for studying metabolic regulation in TME. Stable Isotope Resolved Metabolomics (SIRM) is a valuable tool for tracing metabolic networks in complex systems, but at present does not directly address heterogeneous metabolism at the individual cell level. We compare the advantages and disadvantages of different model systems for SIRM experiments, with a focus on lung cancer cells, their interactions with macrophages and T cells, and their response to modulators in the immune microenvironment. We describe the experimental set up, illustrate results from 3D cultures and co-cultures of lung cancer cells with human macrophages, and outline strategies to address the heterogeneous TME. View PublicationCatalog #: Product Name: 15028 RosetteSep™ Human Monocyte Enrichment Cocktail Catalog #: 15028 Product Name: RosetteSep™ Human Monocyte Enrichment Cocktail - ReferenceP. J\arver et al." (OCT 2018) Scientific reports 8 1 15841
Single-Stranded Nucleic Acids Regulate TLR3/4/7 Activation through Interference with Clathrin-Mediated Endocytosis.
Recognition of nucleic acids by endosomal Toll-like receptors (TLR) is essential to combat pathogens, but requires strict control to limit inflammatory responses. The mechanisms governing this tight regulation are unclear. We found that single-stranded oligonucleotides (ssON) inhibit endocytic pathways used by cargo destined for TLR3/4/7 signaling endosomes. Both ssDNA and ssRNA conferred the endocytic inhibition, it was concentration dependent, and required a certain ssON length. The ssON-mediated inhibition modulated signaling downstream of TLRs that localized within the affected endosomal pathway. We further show that injection of ssON dampens dsRNA-mediated inflammatory responses in the skin of non-human primates. These studies reveal a regulatory role for extracellular ssON in the endocytic uptake of TLR ligands and provide a mechanistic explanation of their immunomodulation. The identified ssON-mediated interference of endocytosis (SOMIE) is a regulatory process that temporarily dampens TLR3/4/7 signaling, thereby averting excessive immune responses. View PublicationCatalog #: Product Name: 15028 RosetteSep™ Human Monocyte Enrichment Cocktail Catalog #: 15028 Product Name: RosetteSep™ Human Monocyte Enrichment Cocktail - ReferenceC. Petes et al. (SEP 2018) Scientific Reports 8 1 13704
IL-27 amplifies cytokine responses to Gram-negative bacterial products and Salmonella typhimurium infection.
Cytokine responses from monocytes and macrophages exposed to bacteria are of particular importance in innate immunity. Focusing on the impact of the immunoregulatory cytokine interleukin (IL)-27 on control of innate immune system responses, we examined human immune responses to bacterial products and bacterial infection by E. coli and S. typhimurium. Since the effect of IL-27 treatment in human myeloid cells infected with bacteria is understudied, we treated human monocytes and macrophages with IL-27 and either LPS, flagellin, or bacteria, to investigate the effect on inflammatory signaling and cytokine responses. We determined that simultaneous stimulation with IL-27 and LPS derived from E. coli or S. typhimurium resulted in enhanced IL-12p40, TNF-$\alpha$, and IL-6 expression compared to that by LPS alone. To elucidate if IL-27 manipulated the cellular response to infection with bacteria, we infected IL-27 treated human macrophages with S. typhimurium. While IL-27 did not affect susceptibility to S. typhimurium infection or S. typhimurium-induced cell death, IL-27 significantly enhanced proinflammatory cytokine production in infected cells. Taken together, we highlight a role for IL-27 in modulating innate immune responses to bacterial infection. View PublicationCatalog #: Product Name: 15028 RosetteSep™ Human Monocyte Enrichment Cocktail 85415 SepMate™-15 (IVD) 85450 SepMate™-50 (IVD) 86415 SepMate™-15 (RUO) 86450 SepMate™-50 (RUO) Catalog #: 15028 Product Name: RosetteSep™ Human Monocyte Enrichment Cocktail Catalog #: 85415 Product Name: SepMate™-15 (IVD) Catalog #: 85450 Product Name: SepMate™-50 (IVD) Catalog #: 86415 Product Name: SepMate™-15 (RUO) Catalog #: 86450 Product Name: SepMate™-50 (RUO) - ReferenceBystrom J et al. (MAY 2017) Clinical reviews in allergy & immunology
Response to Treatment with TNFα Inhibitors in Rheumatoid Arthritis Is Associated with High Levels of GM-CSF and GM-CSF(+) T Lymphocytes.
Biologic TNFα inhibitors are a mainstay treatment option for patients with rheumatoid arthritis (RA) refractory to other treatment options. However, many patients either do not respond or relapse after initially responding to these agents. This study was carried out to identify biomarkers that can distinguish responder from non-responder patients before the initiation of treatment. The level of cytokines in plasma and those produced by ex vivo T cells, B cells and monocytes in 97 RA patients treated with biologic TNFα inhibitors was measured before treatment and after 1 and 3 months of treatment by multiplex analyses. The frequency of T cell subsets and intracellular cytokines were determined by flow cytometry. The results reveal that pre-treatment, T cells from patients who went on to respond to treatment with biologic anti-TNFα agents produced significantly more GM-CSF than non-responder patients. Furthermore, immune cells from responder patients produced higher levels of IL-1β, TNFα and IL-6. Cytokine profiling in the blood of patients confirmed the association between high levels of GM-CSF and responsiveness to biologic anti-TNFα agents. Thus, high blood levels of GM-CSF pre-treatment had a positive predictive value of 87.5% (61.6 to 98.5% at 95% CI) in treated RA patients. The study also shows that cells from most anti-TNFα responder patients in the current cohort produced higher levels of GM-CSF and TNFα pre-treatment than non-responder patients. Findings from the current study and our previous observations that non-responsiveness to anti-TNFα is associated with high IL-17 levels suggest that the disease in responder and non-responder RA patients is likely to be driven/sustained by different inflammatory pathways. The use of biomarker signatures of distinct pro-inflammatory pathways could lead to evidence-based prescription of the most appropriate biological therapies for different RA patients. View PublicationCatalog #: Product Name: 15022 RosetteSep™ Human CD4+ T Cell Enrichment Cocktail 15024 RosetteSep™ Human B Cell Enrichment Cocktail 15023 RosetteSep™ Human CD8+ T Cell Enrichment Cocktail 15028 RosetteSep™ Human Monocyte Enrichment Cocktail Catalog #: 15022 Product Name: RosetteSep™ Human CD4+ T Cell Enrichment Cocktail Catalog #: 15024 Product Name: RosetteSep™ Human B Cell Enrichment Cocktail Catalog #: 15023 Product Name: RosetteSep™ Human CD8+ T Cell Enrichment Cocktail Catalog #: 15028 Product Name: RosetteSep™ Human Monocyte Enrichment Cocktail - ReferenceLiu Y-S et al. (MAY 2017) Oncogene
MiR-181b modulates EGFR-dependent VCAM-1 expression and monocyte adhesion in glioblastoma.
Tumor-associated macrophages (TAMs) originate as circulating monocytes, and are recruited to gliomas, where they facilitate tumor growth and migration. Understanding the interaction between TAM and cancer cells may identify therapeutic targets for glioblastoma multiforme (GBM). Vascular cell adhesion molecule-1 (VCAM-1) is a cytokine-induced adhesion molecule expressed on the surface of cancer cells, which is involved in interactions with immune cells. Analysis of the glioma patient database and tissue immunohistochemistry showed that VCAM-1 expression correlated with the clinico-pathological grade of gliomas. Here, we found that VCAM-1 expression correlated positively with monocyte adhesion to GBM, and knockdown of VCAM-1 abolished the enhancement of monocyte adhesion. Importantly, upregulation of VCAM-1 is dependent on epidermal-growth-factor-receptor (EGFR) expression, and inhibition of EGFR effectively reduced VCAM-1 expression and monocyte adhesion activity. Moreover, GBM possessing higher EGFR levels (U251 cells) had higher VCAM-1 levels compared to GBMs with lower levels of EGFR (GL261 cells). Using two- and three-dimensional cultures, we found that monocyte adhesion to GBM occurs via integrin α4β1, which promotes tumor growth and invasion activity. Increased proliferation and tumor necrosis factor-α and IFN-γ levels were also observed in the adherent monocytes. Using a genetic modification approach, we demonstrated that VCAM-1 expression and monocyte adhesion were regulated by the miR-181 family, and lower levels of miR-181b correlated with high-grade glioma patients. Our results also demonstrated that miR-181b/protein phosphatase 2A-modulated SP-1 de-phosphorylation, which mediated the EGFR-dependent VCAM-1 expression and monocyte adhesion to GBM. We also found that the EGFR-dependent VCAM-1 expression is mediated by the p38/STAT3 signaling pathway. Our study suggested that VCAM-1 is a critical modulator of EGFR-dependent interaction of monocytes with GBM, which raises the possibility of developing effective and improved therapies for GBM.Oncogene advance online publication, 1 May 2017; doi:10.1038/onc.2017.129. View PublicationCatalog #: Product Name: 15028 RosetteSep™ Human Monocyte Enrichment Cocktail Catalog #: 15028 Product Name: RosetteSep™ Human Monocyte Enrichment Cocktail - ReferenceTyagi RK et al. (FEB 2017) Scientific reports 7 41083
Human IDO-competent, long-lived immunoregulatory dendritic cells induced by intracellular pathogen, and their fate in humanized mice.
Targeting of myeloid-dendritic cell receptor DC-SIGN by numerous chronic infectious agents, including Porphyromonas gingivalis, is shown to drive-differentiation of monocytes into dysfunctional mDCs. These mDCs exhibit alterations of their fine-tuned homeostatic function and contribute to dysregulated immune-responses. Here, we utilize P. gingivalis mutant strains to show that pathogen-differentiated mDCs from primary human-monocytes display anti-apoptotic profile, exhibited by elevated phosphorylated-Foxo1, phosphorylated-Akt1, and decreased Bim-expression. This results in an overall inhibition of DC-apoptosis. Direct stimulation of complex component CD40 on DCs leads to activation of Akt1, suggesting CD40 involvement in anti-apoptotic effects observed. Further, these DCs drove dampened CD8(+) T-cell and Th1/Th17 effector-responses while inducing CD25(+)Foxp3(+)CD127(-) Tregs. In vitro Treg induction was mediated by DC expression of indoleamine 2,3-dioxygenase, and was confirmed in IDO-KO mouse model. Pathogen-infected &CMFDA-labeled MoDCs long-lasting survival was confirmed in a huMoDC reconstituted humanized mice. In conclusion, our data implicate PDDCs as an important target for resolution of chronic infection. View PublicationCatalog #: Product Name: 17858 EasySep™ Human CD14 Positive Selection Kit II 15028 RosetteSep™ Human Monocyte Enrichment Cocktail 15628 RosetteSep™ Human Monocyte Depletion Cocktail Catalog #: 17858 Product Name: EasySep™ Human CD14 Positive Selection Kit II Catalog #: 15028 Product Name: RosetteSep™ Human Monocyte Enrichment Cocktail Catalog #: 15628 Product Name: RosetteSep™ Human Monocyte Depletion Cocktail - ReferenceFurman D et al. (JAN 2017) Nature medicine
Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states.
Low-grade, chronic inflammation has been associated with many diseases of aging, but the mechanisms responsible for producing this inflammation remain unclear. Inflammasomes can drive chronic inflammation in the context of an infectious disease or cellular stress, and they trigger the maturation of interleukin-1β (IL-1β). Here we find that the expression of specific inflammasome gene modules stratifies older individuals into two extremes: those with constitutive expression of IL-1β, nucleotide metabolism dysfunction, elevated oxidative stress, high rates of hypertension and arterial stiffness; and those without constitutive expression of IL-1β, who lack these characteristics. Adenine and N(4)-acetylcytidine, nucleotide-derived metabolites that are detectable in the blood of the former group, prime and activate the NLRC4 inflammasome, induce the production of IL-1β, activate platelets and neutrophils and elevate blood pressure in mice. In individuals over 85 years of age, the elevated expression of inflammasome gene modules was associated with all-cause mortality. Thus, targeting inflammasome components may ameliorate chronic inflammation and various other age-associated conditions. View PublicationCatalog #: Product Name: 15028 RosetteSep™ Human Monocyte Enrichment Cocktail Catalog #: 15028 Product Name: RosetteSep™ Human Monocyte Enrichment Cocktail - ReferencePapait A et al. (NOV 2016) Journal of tissue engineering and regenerative medicine
Allogeneic platelet-rich plasma affects monocyte differentiation to dendritic cells causing an anti-inflammatory microenvironment putatively fostering the wound healing.
Autologous platelet rich plasma (PRP) is clinically used to induce repair of different tissues through the release of bioactive molecules. In some patients, the production of an efficient autologous PRP is unfeasible due to their compromised health. We developed an allogeneic PRP mismatched for AB0 and Rh antigens. To broadcast its clinical applications avoiding side effects the outcome of allogeneic PRP on immune response should be defined. Thus, we investigated whether PRP affected the differentiation of peripheral blood monocytes to dendritic cells upon stimulation with granulocyte monocyte colony stimulating factor and interleukin-4. Indeed, these cells are the main players of immune response and tissue repair. PRP inhibited the differentiation of monocytes to CD1a(+) dendritic cells and favored the expansion of phagocytic CD163(+) CD206(+) fibrocyte-like cells. These cells produced inteleukin-10 and prostaglandin-E2, but not interferon-γ, upon stimulation with lipopolysaccharides. Moreover, they promoted the expansion of regulatory CD4(+) CD25(+) FoxP3(+) T cells upon allostimulation or antigen specific priming. Finally, the conditioned medium harvested from monocytes differentiated with PRP triggered a strong chemotactic effect on mesenchymal cells in both scratch and transwell migration assays. These results strongly suggest that allogeneic PRP can foster the differentiation of monocytes to a regulatory anti-inflammatory population possibly favoring wound healing. View PublicationCatalog #: Product Name: 15022 RosetteSep™ Human CD4+ T Cell Enrichment Cocktail 15028 RosetteSep™ Human Monocyte Enrichment Cocktail Catalog #: 15022 Product Name: RosetteSep™ Human CD4+ T Cell Enrichment Cocktail Catalog #: 15028 Product Name: RosetteSep™ Human Monocyte Enrichment Cocktail - ReferenceHang L et al. (AUG 2016) Journal of immunology (Baltimore, Md. : 1950)
Downregulation of the Syk Signaling Pathway in Intestinal Dendritic Cells Is Sufficient To Induce Dendritic Cells That Inhibit Colitis.
Helminthic infections modulate host immunity and may protect people in less-developed countries from developing immunological diseases. In a murine colitis model, the helminth Heligmosomoides polygyrus bakeri prevents colitis via induction of regulatory dendritic cells (DCs). The mechanism driving the development of these regulatory DCs is unexplored. There is decreased expression of the intracellular signaling pathway spleen tyrosine kinase (Syk) in intestinal DCs from H. polygyrus bakeri-infected mice. To explore the importance of this observation, it was shown that intestinal DCs from DC-specific Syk(-/-) mice were powerful inhibitors of murine colitis, suggesting that loss of Syk was sufficient to convert these cells into their regulatory phenotype. DCs sense gut flora and damaged epithelium via expression of C-type lectin receptors, many of which signal through the Syk signaling pathway. It was observed that gut DCs express mRNA encoding for C-type lectin (CLEC) 7A, CLEC9A, CLEC12A, and CLEC4N. H. polygyrus bakeri infection downmodulated CLEC mRNA expression in these cells. Focusing on CLEC7A, which encodes for the dectin-1 receptor, flow analysis showed that H. polygyrus bakeri decreases dectin-1 expression on the intestinal DC subsets that drive Th1/Th17 development. DCs become unresponsive to the dectin-1 agonist curdlan and fail to phosphorylate Syk after agonist stimulation. Soluble worm products can block CLEC7A and Syk mRNA expression in gut DCs from uninfected mice after a brief in vitro exposure. Thus, downmodulation of Syk expression and phosphorylation in intestinal DCs could be important mechanisms through which helminths induce regulatory DCs that limit colitis. View PublicationCatalog #: Product Name: 15028 RosetteSep™ Human Monocyte Enrichment Cocktail Catalog #: 15028 Product Name: RosetteSep™ Human Monocyte Enrichment Cocktail - ReferenceKostadinova L et al. (AUG 2016) The Journal of infectious diseases
During HCV and HCV-HIV infection elevated plasma Autotaxin is associated with LPA and markers of immune activation that normalize during IFN-free HCV therapy.
BACKGROUND Immune activation predicts morbidity during HCV and HIV infection, though mechanisms underlying immune activation are unclear. Plasma autotaxin and its enzymatic product, lysophosphatidic-acid (LPA), are elevated during HCV infection, and LPA activates immunocytes, but whether this contributes to immune activation is unknown. METHODS We evaluated plasma autotaxin, IL-6, sCD14, sCD163, and Mac2-Binding Protein (Mac2BP) during HCV, HIV and HCV-HIV infection, and in uninfected controls, before and after HIV ART and IFN-free HCV therapy. RESULTS We observed greater plasma autotaxin levels in HCV and HCV-HIV-infected compared to uninfected participants, primarily those with higher AST/PLT ratio index. Autotaxin levels correlated with IL-6, sCD14, sCD163, Mac2BP, and LPA in HCV-infected, and with Mac2BP in HCV-HIV-infected participants, while in HIV infection sCD14 correlated with Mac2BP. Autotaxin, LPA and sCD14 levels normalized, while sCD163 and Mac2BP levels partially normalized within 6 months of starting IFN-free HCV therapy. sCD163 and IL-6 levels normalized within 6 months of starting HIV ART. In vitro, LPA activated monocytes. CONCLUSION These data indicate elevated autotaxin levels and soluble markers of immune activation during HCV infection are partially reversible within 6 months of IFN-free HCV treatment, and autotaxin may be causally linked to immune activation during HCV and HCV-HIV infection. View PublicationCatalog #: Product Name: 15028 RosetteSep™ Human Monocyte Enrichment Cocktail Catalog #: 15028 Product Name: RosetteSep™ Human Monocyte Enrichment Cocktail - ReferenceBorsa M et al. ( 2015) The Virology Journal 12 77
HIV infection and antiretroviral therapy lead to unfolded protein response activation
BACKGROUND: The unfolded protein response (UPR) is one of the pathways triggered to ensure quality control of the proteins assembled in the endoplasmic reticulum (ER) when cell homeostasis is compromised. This mechanism is primarily composed of three transmembrane proteins serving as stress sensors: PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1). These three proteins' synergic action elicits translation and transcriptional downstream pathways, leading to less protein production and activating genes that encode important proteins in folding processes, including chaperones. Previous reports showed that viruses have evolved mechanisms to curtail or customize this UPR signaling for their own benefit. However, HIV infection's effect on the UPR has scarcely been investigated. METHODS: This work investigated UPR modulation by HIV infection by assessing UPR-related protein expression under in vitro and in vivo conditions via Western blotting. Antiretroviral (ARV) drugs' influence on this stress response was also considered. RESULTS: In in vitro and in vivo analyses, our results confirm that HIV infection activates stress-response components and that ARV therapy contributes to changes in the UPR's activation profile. CONCLUSIONS: This is the first report showing UPR-related protein expression in HIV target cells derived directly from HIV-infected patients receiving different ARV therapies. Thus, two mechanisms may occur simultaneously: interference by HIV itself and the ARV drugs' pharmacological effects as UPR activators. New evidence of how HIV modulates the UPR to enhance its own replication and secure infection success is also presented. View PublicationCatalog #: Product Name: 15022 RosetteSep™ Human CD4+ T Cell Enrichment Cocktail 15028 RosetteSep™ Human Monocyte Enrichment Cocktail Catalog #: 15022 Product Name: RosetteSep™ Human CD4+ T Cell Enrichment Cocktail Catalog #: 15028 Product Name: RosetteSep™ Human Monocyte Enrichment Cocktail
Shop By
Filter Results
Filters:
- Resource Type Reference Remove This Item
- Clear All
- Area of Interest
- Cell Line Development 1 item
- Drug Discovery and Toxicity Testing 1 item
- Immunology 30 items
- Brand
- ClonaCell 1 item
- EasySep 3 items
- RosetteSep 40 items
- SepMate 1 item
- Cell Type
- Dendritic Cells 2 items
- Hybridomas 1 item
- Monocytes 13 items
- NK Cells 1 item
- T Cells, CD4+ 2 items