Showing 1 - 12 of 59 results for "07930"
Note: Catalog #100-1061 is the same formulation as CryoStor® CS10, 100 mL (Catalog #07930), which is currently unavailable. Catalog #100-1061 has been added to accommodate BioLife Solutions' qualification of an additional bottle supplier to ensure continuity of supply. Any inquiries related to the new Catalog # may be directed to our Product and Scientific Support Team at techsupport@stemcell.com.
- ReferenceSosef MN et al. (JAN 2005) Annals of surgery 241 1 125--33
Cryopreservation of isolated primary rat hepatocytes: enhanced survival and long-term hepatospecific function.
OBJECTIVE To investigate the long-term effect of cryopreservation on hepatocyte function, as well as attempt to improve cell viability and function through the utilization of the hypothermic preservation solution, HypoThermosol (HTS), as the carrier solution. SUMMARY BACKGROUND DATA Advances in the field of bioartificial liver support have led to an increasing demand for successful, efficient means of cryopreservation of hepatocytes. METHODS Fresh rat hepatocytes were cryopreserved in suspension in culture media (Media-cryo group) or HTS (HTS-cryo group), both supplemented with 10% DMSO. Following storage up to 2 months in liquid nitrogen, cells were thawed and maintained in a double collagen gel culture for 14 days. Hepatocyte yield and viability were assessed up to 14 days postthaw. Serial measurements of albumin secretion, urea synthesis, deethylation of ethoxyresorufin (CYT P450 activity), and responsiveness to stimulation with interleukin-6 (IL-6) were performed. RESULTS Immediate postthaw viability was 60% in Media-cryo and 79% in HTS-cryo, in comparison with control (90%). Albumin secretion, urea synthesis and CYT P450 activity yielded 33%, 55%, and 59% in Media-cryo and 71%, 80%, and 88% in HTS-cryo, respectively, compared with control (100%). Assessment of cellular response to IL-6 following cryopreservation revealed a similar pattern of up-regulation in fibrinogen production and suppression of albumin secretion compared with nonfrozen controls. CONCLUSIONS This study demonstrates that isolated rat hepatocytes cryopreserved using HTS showed high viability, long-term hepatospecific function, and response to cytokine challenge. These results may represent an important step forward to the utilization of cryopreserved isolated hepatocytes in bioartificial liver devices. View PublicationCatalog #: Product Name: 07930 CryoStor® CS10 Catalog #: 07930 Product Name: CryoStor® CS10 - ReferenceStylianou J et al. ( 2006) Cytotherapy 8 1 57--61
Novel cryoprotectant significantly improves the post-thaw recovery and quality of HSC from CB.
BACKGROUND Hematopoietic stem cells (HSC) have traditionally been frozen using the cryoprotectant DMSO in dextran-40, saline or albumin. However, the process of freezing and thawing results in loss of HSC numbers and/or function. METHODS This study investigated the use of CryoStor for the freezing of HSC from cord blood (CB). CB donations (n = 30) were collected under an Institutional Ethics Committee-approved protocol, volume reduced and frozen using three different methods of cryoprotection. Aliquots were frozen with either 10% DMSO in dextran-40, 10% DMSO in CryoStor or 5% DMSO in CryoStor. Prior to freezing samples were separated for nucleated cell (NC) and CD34+ counts and assessment of CD34+ viability. Aliquots were frozen and kept in vapor phase nitrogen for a minimum of 72 h. Vials were rapidly thawed at 37 degrees C and tested for NC and CD34+ counts and CD34+ viability and colony-forming unit (CFU) assay. RESULTS Cells frozen with CryoStor in 10% DMSO had significantly improved NC (P < 0.001), CD34+ recovery, viable CD34+ (P < 0.001) and CFU numbers (P < 0.001) compared with dextran in 10% DMSO. CryoStor in 5% DMSO resulted in significantly improved NC (P < 0.001) and CFU (P < 0.001). DISCUSSION These results suggest that improved HSC recovery, viability and functionality can be obtained using CryoStor with 10% DMSO and that similar if not better numbers can be obtained with 5% DMSO compared with dextran-40 with 10% DMSO. View PublicationCatalog #: Product Name: 07930 CryoStor® CS10 Catalog #: 07930 Product Name: CryoStor® CS10 - ReferenceSarugaser R et al. ( 2009) Methods in molecular biology (Clifton, N.J.) 482 269--79
Isolation, propagation, and characterization of human umbilical cord perivascular cells (HUCPVCs).
Current sources of mesenchymal cells, including bone marrow, fat and muscle, all require invasive procurement procedures, and provide relatively low frequencies of progenitors. Here, we describe the non-invasive isolation, and characterization, of a rich source of mesenchymal progenitor cells, which we call human umbilical cord perivascular cells (HUCPVCs). HUCPVCs show a similar immunological phenotype to bone marrow-derived mesenchymal stromal cells (BM-MSCs), since they are non-alloreactive, exhibit immunosuppression, and significantly reduce lymphocyte activation, in vitro. They present a non-hematopoietic myofibroblastic mesenchymal phenotype (CD45-, CD34-, CD105+, CD73+, CD90+, CD44+, CD106+, 3G5+, CD146+); with a 1:300 frequency at harvest, a short-doubling time, and a clonogenic frequency of textgreater1:3 in culture. Furthermore, in addition to robust quinti-potential differentiation capacity in vitro, HUCPVCs have been shown to contribute to both musculo-skeletal and dermal wound healing in vivo. View PublicationCatalog #: Product Name: 07930 CryoStor® CS10 Catalog #: 07930 Product Name: CryoStor® CS10 - ReferenceLuckett-Chastain LR and Gallucci RM (AUG 2009) The British journal of dermatology 161 2 237--48
Interleukin (IL)-6 modulates transforming growth factor-beta expression in skin and dermal fibroblasts from IL-6-deficient mice.
BACKGROUND Interleukin (IL-6) and transforming growth factor (TGF)-beta have been shown to play a role in skin development and maintenance. OBJECTIVES A link between these two cytokines has yet to be identified and therefore in this study we investigated the modulation of TGF-beta1 and TGF-beta type 2 receptor (TGF-betaR2) by IL-6 in skin. METHODS An IL-6 knockout (IL-6KO) fibroblast-populated lattice model and intradermal injections of IL-6 into unwounded IL-6KO mice were used to investigate the direct effects of IL-6 treatment on TGF-beta and TGF-betaR2 expression and to determine the signalling mechanism. In addition, IL-6KO and C57BL/6 control mice were wounded by a 4-mm punch biopsy to monitor expression of TGF-beta1 and TGF-betaR2 within a wound over time. The expression of TGF-beta1 and TGF-betaR2 was assessed by real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay and immunohistology. RESULTS Recombinant IL-6 treatment of IL-6KO lattices and intradermal injections of IL-6 showed a significant induction of TGF-beta1 mRNA and protein, with TGF-beta1 expression localized in the dermis, while TGF-betaR2 expression was primarily in the epidermis in IL-6KO mice. During healing, the expression of TGF-beta1 and TGF-betaR2 mRNA was significantly greater in unwounded and 7-day-old wounds from wild-type mice; however, protein expression did not differ. Treatment with signal transduction inhibitors indicated that IL-6 modulates TGF-beta through a mitogen-activated protein kinase/extracellular signal-regulated kinase (Mapk/Erk)-dependent mechanism. CONCLUSION These studies indicate that IL-6 has the ability to modulate the expression of TGF-beta and TGF-betaR2 to varying degrees in the skin, which may provide a possible mechanism for defining the role of IL-6 in skin maintenance and a new association of IL-6 with TGF-beta in pathologies associated with fibrosis. View PublicationCatalog #: Product Name: 07930 CryoStor® CS10 Catalog #: 07930 Product Name: CryoStor® CS10 - ReferenceClarke DM et al. (JAN 2009) Cytotherapy 11 4 472--9
Improved post-thaw recovery of peripheral blood stem/progenitor cells using a novel intracellular-like cryopreservation solution.
BACKGROUND AIMS Peripheral blood stem cells (PBSC) have become the preferred stem cell source for autologous hematopoietic transplantation. A critical aspect of this treatment modality is cryopreservation of the stem cell products, which permits temporal separation of the PBSC mobilization/collection phase from the subsequent high-dose therapy. While controlled rate-freezing and liquid nitrogen storage have become 'routine' practice in many cell-processing facilities, there is clearly room for improvement as current cryopreservation media formulations still result in significant loss and damage to the stem/progenitor cell populations essential for engraftment, and can also expose the patients to relatively undefined serum components and larger volumes of dimethylsulfoxide (DMSO) that can contribute to the morbidity and mortality of the transplant therapy. METHODS This study compared cryopreservation of PBSC in a novel intracellular-like, fully defined, serum- and protein-free preservation solution, CryoStor (BioLife Solutions Inc.), with a standard formulation used by the Fred Hutchinson Cancer Research Center (FHCRC). Briefly, human PBSC apheresis specimens were collected and 5 x 10(7) cells/1 mL sample vial were prepared for cryopreservation in the following solutions: (a) FHCRC standard, Normosol-R, 5% human serum albumin (HAS) and 10% DMSO; and (b) CryoStor CS10 (final diluted concentration of 5% DMSO). A standard controlled-rate freezing program was employed, and frozen vials were stored in the vapor phase of a liquid nitrogen freezer for a minimum of 1 week. Vials were then thawed and evaluated for total nucleated cell count (TNC), viability, CD34 and granulocytes by flow cytometry, along with colony-forming activity in methylcellulose. RESULTS The PBSC samples frozen in CryoStor CS10 yielded significantly improved post-thaw recoveries for total viable CD34(+), colony-forming units (CFU) and granulocytes. Specifically, relative to the FHCRC standard formulation, cryopreservation with CS10 resulted in an average 1.8-fold increased recovery of viable CD34(+) cells (P=0.005), a 1.5-fold increase in CFU-granulocyte-macrophage (GM) numbers (P=0.030) and a 2.3-fold increase in granulocyte recovery (P=0.045). CONCLUSIONS This study indicates that use of CryoStor for cryopreservation can yield significantly improved recovery and in vitro functionality of stem/progenitor cells in PBSC products. In addition, it is important to note that these improved recoveries were obtained while not introducing any extra serum or serum-derived proteins, and reducing the final concentration/volume of DMSO by half. Further in vitro and in vivo studies are clearly necessary; however, these findings imply use of CryoStor for cryopreservation could result in improved engraftment for those patients with a lower content of CD34(+) cells in their PBSC collections, along with reducing the requirement for additional apheresis collections and decreasing the risk of adverse infusion reactions associated with higher exposure to DMSO. View PublicationCatalog #: Product Name: 07930 CryoStor® CS10 07933 CryoStor® CS5 Catalog #: 07930 Product Name: CryoStor® CS10 Catalog #: 07933 Product Name: CryoStor® CS5 - ReferenceThirumala S et al. (JUL 2009) Organogenesis 5 3 143--54
Clinical grade adult stem cell banking.
There has been a great deal of scientific interest recently generated by the potential therapeutic applications of adult stem cells in human care but there are several challenges regarding quality and safety in clinical applications and a number of these challenges relate to the processing and banking of these cells ex-vivo. As the number of clinical trials and the variety of adult cells used in regenerative therapy increases, safety remains a primary concern. This has inspired many nations to formulate guidelines and standards for the quality of stem cell collection, processing, testing, banking, packaging and distribution. Clinically applicable cryopreservation and banking of adult stem cells offers unique opportunities to advance the potential uses and widespread implementation of these cells in clinical applications. Most current cryopreservation protocols include animal serum proteins and potentially toxic cryoprotectant additives (CPAs) that prevent direct use of these cells in human therapeutic applications. Long term cryopreservation of adult stem cells under good manufacturing conditions using animal product free solutions is critical to the widespread clinical implementation of ex-vivo adult stem cell therapies. Furthermore, to avoid any potential cryoprotectant related complications, reduced CPA concentrations and efficient post-thaw washing to remove CPA are also desirable. The present review focuses on the current strategies and important aspects of adult stem cell banking for clinical applications. These include current good manufacturing practices (cGMPs), animal protein free freezing solutions, cryoprotectants, freezing & thawing protocols, viability assays, packaging and distribution. The importance and benefits of banking clinical grade adult stem cells are also discussed. View PublicationCatalog #: Product Name: 07930 CryoStor® CS10 Catalog #: 07930 Product Name: CryoStor® CS10 - ReferenceMurphy S et al. (APR 2010) Current protocols in stem cell biology Chapter 1 Unit 1E.6
Amnion epithelial cell isolation and characterization for clinical use.
Human amnion epithelial cells (hAECs) are a heterologous population positive for stem cell markers; they display multilineage differentiation potential, differentiating into cells of the endoderm (liver, lung epithelium), mesoderm (bone, fat), and ectoderm (neural cells). They have a low immunogenic profile and possess potent immunosuppressive properties. Hence, hAECs may be a valuable source of cells for cell therapy. This unit describes an efficient and effective method of hAEC isolation, culture, and cryopreservation that is animal product-free and in accordance with current guidelines on preparation of cells for clinical use. Cells isolated using this method were characterized after 5 passages by analysis of karyotype, cell cycle distribution, and changes in telomere length. The differentiation potential of hAECs isolated using this animal product-free method was demonstrated by differentiation into lineages of the three primary germ layers and expression of lineage-specific markers analyzed by PCR, immunocytochemistry, and histology. View PublicationCatalog #: Product Name: 07930 CryoStor® CS10 Catalog #: 07930 Product Name: CryoStor® CS10 - ReferenceEngelhardt BG et al. (MAR 2011) Bone marrow transplantation 46 3 436--42
Regulatory T cell expression of CLA or α(4)β(7) and skin or gut acute GVHD outcomes.
Regulatory T cells (Tregs) are a suppressive subset of CD4(+) T lymphocytes implicated in the prevention of acute GVHD (aGVHD) after allo-SCT (ASCT). To determine whether increased frequency of Tregs with a skin-homing (cutaneous lymphocyte Ag, CLA(+)) or a gut-homing (α(4)β(7)(+)) phenotype is associated with reduced risk of skin or gut aGVHD, respectively, we quantified circulating CLA(+) or α(4)β(7)(+) on Tregs at the time of neutrophil engraftment in 43 patients undergoing ASCT. Increased CLA(+) Tregs at engraftment was associated with the prevention of skin aGVHD (2.6 vs 1.7%; P=0.038 (no skin aGVHD vs skin aGVHD)), and increased frequencies of CLA(+) and α(4)β(7)(+) Tregs were negatively correlated with severity of skin aGVHD (odds ratio (OR), 0.67; 95% confidence interval (CI), 0.46-0.98; P=0.041) or gut aGVHD (OR, 0.93; 95% CI, 0.88-0.99; P=0.031), respectively. This initial report suggests that Treg tissue-homing subsets help to regulate organ-specific risk and severity of aGVHD after human ASCT. These results need to be validated in a larger, multicenter cohort. View PublicationCatalog #: Product Name: 07930 CryoStor® CS10 Catalog #: 07930 Product Name: CryoStor® CS10 - ReferenceHessel A et al. (AUG 2010) PloS one 5 8 e12217
A pandemic influenza H1N1 live vaccine based on modified vaccinia Ankara is highly immunogenic and protects mice in active and passive immunizations.
BACKGROUND The development of novel influenza vaccines inducing a broad immune response is an important objective. The aim of this study was to evaluate live vaccines which induce both strong humoral and cell-mediated immune responses against the novel human pandemic H1N1 influenza virus, and to show protection in a lethal animal challenge model. METHODOLOGY/PRINCIPAL FINDINGS For this purpose, the hemagglutinin (HA) and neuraminidase (NA) genes of the influenza A/California/07/2009 (H1N1) strain (CA/07) were inserted into the replication-deficient modified vaccinia Ankara (MVA) virus--a safe poxviral live vector--resulting in MVA-H1-Ca and MVA-N1-Ca vectors. These live vaccines, together with an inactivated whole virus vaccine, were assessed in a lung infection model using immune competent Balb/c mice, and in a lethal challenge model using severe combined immunodeficient (SCID) mice after passive serum transfer from immunized mice. Balb/c mice vaccinated with the MVA-H1-Ca virus or the inactivated vaccine were fully protected from lung infection after challenge with the influenza H1N1 wild-type strain, while the neuraminidase virus MVA-N1-Ca induced only partial protection. The live vaccines were already protective after a single dose and induced substantial amounts of neutralizing antibodies and of interferon-gamma-secreting (IFN-gamma) CD4- and CD8 T-cells in lungs and spleens. In the lungs, a rapid increase of HA-specific CD4- and CD8 T cells was observed in vaccinated mice shortly after challenge with influenza swine flu virus, which probably contributes to the strong inhibition of pulmonary viral replication observed. In addition, passive transfer of antisera raised in MVA-H1-Ca vaccinated immune-competent mice protected SCID mice from lethal challenge with the CA/07 wild-type virus. CONCLUSIONS/SIGNIFICANCE The non-replicating MVA-based H1N1 live vaccines induce a broad protective immune response and are promising vaccine candidates for pandemic influenza. View PublicationCatalog #: Product Name: 07930 CryoStor® CS10 Catalog #: 07930 Product Name: CryoStor® CS10 - ReferenceXu C et al. (JAN 2011) Regenerative medicine 6 1 53--66
Efficient generation and cryopreservation of cardiomyocytes derived from human embryonic stem cells.
AIM Human embryonic stem cells (hESCs) represent a novel cell source to treat diseases such as heart failure and for use in drug screening. In this study, we aim to promote efficient generation of cardiomyocytes from hESCs by combining the current optimal techniques of controlled growth of undifferentiated cells and specific induction for cardiac differentiation. We also aim to examine whether these methods are scalable and whether the differentiated cells can be cryopreserved. METHODS & RESULTS hESCs were maintained without conditioned medium or feeders and were sequentially treated with activin A and bone morphogenetic protein-4 in a serum-free medium. This led to differentiation into cell populations containing high percentages of cardiomyocytes. The differentiated cells expressed appropriate cardiomyocyte markers and maintained contractility in culture, and the majority of the cells displayed working chamber (atrial and ventricular) type electrophysiological properties. In addition, the cell growth and differentiation process was adaptable to large culture formats. Moreover, the cardiomyocytes survived following cryopreservation, and viable cardiac grafts were detected after transplantation of cryopreserved cells into rat hearts following myocardial infarctions. CONCLUSION These results demonstrate that cardiomyocytes of high quality can be efficiently generated and cryopreserved using hESCs maintained in serum-free medium, a step forward towards the application of these cells to human clinical use or drug discovery. View PublicationCatalog #: Product Name: 07930 CryoStor® CS10 Catalog #: 07930 Product Name: CryoStor® CS10 - ReferenceZhu W-Z et al. ( 2011) Methods in molecular biology (Clifton, N.J.) 767 419--31
Methods for the derivation and use of cardiomyocytes from human pluripotent stem cells.
The availability of human cardiomyocytes derived from embryonic stem cells (ESCs) has generated -considerable excitement, as these cells are an excellent model system for studying myocardial development and may have eventual application in cell-based cardiac repair. Cardiomyocytes derived from the related induced pluripotent stem cells (iPSCs) have similar properties, but also offer the prospects of patient-specific disease modeling and cell therapies. Unfortunately, the methods by which cardiomyocytes have been historically generated from pluripotent stem cells are unreliable and typically result in preparations of low cardiac purity (typically textless1% cardiomyocytes). We detail here the methods for a recently reported directed cardiac differentiation protocol, which involves the serial application of two growth factors known to be involved in early embryonic heart development, activin A, and bone morphogenetic protein-4 (BMP-4). This protocol reliably yields preparations of 30-60% cardiomyocytes, which can then be further enriched to textgreater90% cardiomyocytes using straightforward physical methods. View PublicationCatalog #: Product Name: 07930 CryoStor® CS10 Catalog #: 07930 Product Name: CryoStor® CS10 - ReferenceNicoud IB et al. (SEP 2012) Transfusion 52 9 2055--62
Cryopreservation of umbilical cord blood with a novel freezing solution that mimics intracellular ionic composition.
BACKGROUND Cryopreservation protocols have remained relatively unchanged since the first umbilical cord blood banking program was established. This study evaluated the preservation efficacy of a novel intracellular-like cryopreservation solution (CryoStor, BioLife Solutions, Inc.), the rate of addition of two cryopreservation solutions to cord blood units (CBUs), and reduced final dimethyl sulfoxide (DMSO) concentration of 5%. STUDY DESIGN AND METHODS Split-sample CBUs were cryopreserved with either an in-house 20% DMSO-based cryopreservation solution or CryoStor CS10 at a rate of 1 mL/min (n = 10; i.e., slow addition) or as a bolus injection (n = 6; i.e., fast addition). Infrared images of exothermic effects of the cryopreservation solutions were monitored relative to the rate of addition. Prefreeze and postthaw colony-forming unit assays, total nucleated cells, and CD34+ cell counts were compared. RESULTS Maximum temperature excursions observed were less than 6°C, regardless of the rate of solution addition. Fast addition resulted in peak excursions approximately twice that of slow addition but the magnitude and duration were minimal and transient. Slow addition of CryoStor CS10 (i.e., final concentration % 5% DMSO) resulted in significantly better postthaw CD34+ cell recoveries; no other metrics were significantly different. Fast addition of CryoStor resulted in similar postthaw metrics compared to slow addition of the in-house solution. CONCLUSION Slow and fast addition of cryopreservation solutions result in mean temperature changes of approximately 3.3 to 4.45°C. Postthaw recoveries with CryoStor were equivalent to or slightly better than with the in-house cryopreservation solution. CryoStor also provides several advantages including reduced processing time, formulation consistency, and reduced DMSO in the frozen product (% 5%). View PublicationCatalog #: Product Name: 07930 CryoStor® CS10 Catalog #: 07930 Product Name: CryoStor® CS10
Shop By
Filter Results
Filters:
- Area of Interest
-
- Cancer 8 items
- Cell Line Development 1 item
- Drug Discovery and Toxicity Testing 1 item
- Endothelial Cell Biology 1 item
- Epithelial Cell Biology 4 items
- Immunology 17 items
- Neuroscience 1 item
- Stem Cell Biology 19 items
- Brand
-
- CryoStor 56 items
- EasySep 1 item
- Lymphoprep 1 item
- STEMdiff 4 items
- SepMate 3 items
- StemSpan 3 items
- TeSR 9 items
- Cell Type
-
- B Cells 1 item
- Dendritic Cells 3 items
- Dermal Cells 1 item
- Epithelial Cells 1 item
- Hematopoietic Stem and Progenitor Cells 5 items
- Hepatic Cells 2 items
- Leukemia/Lymphoma Cells 4 items
- Mesenchymal Stem and Progenitor Cells 4 items
- Mononuclear Cells 9 items
- Neural Cells, PSC-Derived 1 item
- Neural Stem and Progenitor Cells 1 item
- Neurons 1 item
- Pluripotent Stem Cells 7 items
- Renal Cells 2 items
- T Cells 1 item
- T Cells, Regulatory 3 items