Showing 1 - 12 of 53 results for "07920"
- ReferenceM. van den Hurk et al. ( 2018) Frontiers in Molecular Neuroscience
Patch-Seq Protocol to Analyze the Electrophysiology, Morphology and Transcriptome of Whole Single Neurons Derived From Human Pluripotent Stem Cells
The human brain is composed of a complex assembly of about 171 billion heterogeneous cellular units (86 billion neurons and 85 billion non-neuronal glia cells). A comprehensive description of brain cells is necessary to understand the nervous system in health and disease. Recently, advances in genomics have permitted the accurate analysis of the full transcriptome of single cells (scRNA-seq). We have built upon such technical progress to combine scRNA-seq with patch-clamping electrophysiological recording and morphological analysis of single human neurons in vitro. This new powerful method, referred to as Patch-seq, enables a thorough, multimodal profiling of neurons and permits us to expose the links between functional properties, morphology, and gene expression. Here, we present a detailed Patch-seq protocol for isolating single neurons from in vitro neuronal cultures. We have validated the Patch-seq whole-transcriptome profiling method with human neurons generated from embryonic and induced pluripotent stem cells (ESCs/iPSCs) derived from healthy subjects, but the procedure may be applied to any kind of cell type in vitro. Patch-seq may be used on neurons in vitro to profile cell types and states in depth to unravel the human molecular basis of neuronal diversity and investigate the cellular mechanisms underlying brain disorders. View PublicationCatalog #: Product Name: 07920 ACCUTASE™ 05711 NeuroCult™ SM1 Neuronal Supplement 07152 N2 Supplement-A 05790 BrainPhys™ Neuronal Medium 05792 BrainPhys™ Neuronal Medium and SM1 Kit 05794 BrainPhys™ Primary Neuron Kit 05795 BrainPhys™ hPSC Neuron Kit 05793 BrainPhys™ Neuronal Medium N2-A & SM1 Kit Catalog #: 07920 Product Name: ACCUTASE™ Catalog #: 05711 Product Name: NeuroCult™ SM1 Neuronal Supplement Catalog #: 07152 Product Name: N2 Supplement-A Catalog #: 05790 Product Name: BrainPhys™ Neuronal Medium Catalog #: 05792 Product Name: BrainPhys™ Neuronal Medium and SM1 Kit Catalog #: 05794 Product Name: BrainPhys™ Primary Neuron Kit Catalog #: 05795 Product Name: BrainPhys™ hPSC Neuron Kit Catalog #: 05793 Product Name: BrainPhys™ Neuronal Medium N2-A & SM1 Kit - ReferenceA. Srinivasan et al. (JUN 2018) Biomaterials 167 153--167
Substrate stiffness modulates the multipotency of human neural crest derived ectomesenchymal stem cells via CD44 mediated PDGFR signaling.
Mesenchymal stem cells (MSCs) have been isolated from various mesodermal and ectodermal tissues. While the phenotypic and functional heterogeneity of MSCs stemming from their developmental origins has been acknowledged, the genetic and environmental factors underpinning these differences are not well-understood. Here, we investigated whether substrate stiffness mediated mechanical cues can directly modulate the development of ectodermal MSCs (eMSCs) from a precursor human neural crest stem cell (NCSC) population. We showed that NCSC-derived eMSCs were transcriptionally and functionally distinct from mesodermal bone marrow MSCs. eMSCs derived on lower substrate stiffness specifically increased their expression of the MSC marker, CD44 in a Rho-ROCK signaling dependent manner, which resulted in a concomitant increase in the eMSCs' adipogenic and chondrogenic differentiation potential. This mechanically-induced effect can only be maintained for short-term upon switching back to a stiff substrate but can be sustained for longer-term when the eMSCs were exclusively maintained on soft substrates. We also discovered that CD44 expression modulated eMSC self-renewal and multipotency via the downregulation of downstream platelet-derived growth factor receptor beta (PDGFRbeta$) signaling. This is the first instance demonstrating that substrate stiffness not only influences the differentiation trajectories of MSCs but also their derivation from upstream progenitors, such as NCSCs. View PublicationCatalog #: Product Name: 85850 mTeSR™1 07920 ACCUTASE™ Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 07920 Product Name: ACCUTASE™ - ReferenceC. L. Moreno et al. ( 2018) Molecular neurodegeneration 13 1 33
iPSC-derived familial Alzheimer's PSEN2 N141I cholinergic neurons exhibit mutation-dependent molecular pathology corrected by insulin signaling.
BACKGROUND Type 2 diabetes (T2D) is a recognized risk factor for the development of cognitive impairment (CI) and/or dementia, although the exact nature of the molecular pathology of T2D-associated CI remains obscure. One link between T2D and CI might involve decreased insulin signaling in brain and/or neurons in either animal or postmortem human brains as has been reported as a feature of Alzheimer's disease (AD). Here we asked if neuronal insulin resistance is a cell autonomous phenomenon in a familial form of AD. METHODS We have applied a newly developed protocol for deriving human basal forebrain cholinergic neurons (BFCN) from skin fibroblasts via induced pluripotent stem cell (iPSC) technology. We generated wildtype and familial AD mutant PSEN2 N141I (presenilin 2) BFCNs and assessed if insulin signaling, insulin regulation of the major AD proteins Abeta$ and/or tau, and/or calcium fluxes is altered by the PSEN2 N141I mutation. RESULTS We report herein that wildtype, PSEN2 N141I and CRISPR/Cas9-corrected iPSC-derived BFCNs (and their precursors) show indistinguishable insulin signaling profiles as determined by the phosphorylation of canonical insulin signaling pathway molecules. Chronic insulin treatment of BFCNs of all genotypes led to a reduction in the Abeta$42/40 ratio. Unexpectedly, we found a CRISPR/Cas9-correctable effect of PSEN2 N141I on calcium flux, which could be prevented by chronic exposure of BFCNs to insulin. CONCLUSIONS Our studies indicate that the familial AD mutation PSEN2 N141I does not induce neuronal insulin resistance in a cell autonomous fashion. The ability of insulin to correct calcium fluxes and to lower Abeta$42/40 ratio suggests that insulin acts to oppose an AD-pathophysiology. Hence, our results are consistent with a potential physiological role for insulin as a mediator of resilience by counteracting specific metabolic and molecular features of AD. View PublicationCatalog #: Product Name: 85850 mTeSR™1 07920 ACCUTASE™ 05791 BrainPhys™ Without Phenol Red 05790 BrainPhys™ Neuronal Medium 05792 BrainPhys™ Neuronal Medium and SM1 Kit 05794 BrainPhys™ Primary Neuron Kit 05795 BrainPhys™ hPSC Neuron Kit 05793 BrainPhys™ Neuronal Medium N2-A & SM1 Kit Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 07920 Product Name: ACCUTASE™ Catalog #: 05791 Product Name: BrainPhys™ Without Phenol Red Catalog #: 05790 Product Name: BrainPhys™ Neuronal Medium Catalog #: 05792 Product Name: BrainPhys™ Neuronal Medium and SM1 Kit Catalog #: 05794 Product Name: BrainPhys™ Primary Neuron Kit Catalog #: 05795 Product Name: BrainPhys™ hPSC Neuron Kit Catalog #: 05793 Product Name: BrainPhys™ Neuronal Medium N2-A & SM1 Kit - ReferenceM. S. Fernandopulle et al. (JUN 2018) Current protocols in cell biology 79 1 e51
Transcription Factor-Mediated Differentiation of Human iPSCs into Neurons.
Accurate modeling of human neuronal cell biology has been a long-standing challenge. However, methods to differentiate human induced pluripotent stem cells (iPSCs) to neurons have recently provided experimentally tractable cell models. Numerous methods that use small molecules to direct iPSCs into neuronal lineages have arisen in recent years. Unfortunately, these methods entail numerous challenges, including poor efficiency, variable cell type heterogeneity, and lengthy, expensive differentiation procedures. We recently developed a new method to generate stable transgenic lines of human iPSCs with doxycycline-inducible transcription factors at safe-harbor loci. Using a simple two-step protocol, these lines can be inducibly differentiated into either cortical (i3 Neurons) or lower motor neurons (i3 LMN) in a rapid, efficient, and scalable manner (Wang et al., 2017). In this manuscript, we describe a set of protocols to assist investigators in the culture and genetic engineering of iPSC lines to enable transcription factor-mediated differentiation of iPSCs into i3 Neurons or i3 LMNs, and we present neuronal culture conditions for various experimental applications. {\textcopyright} 2018 by John Wiley & Sons, Inc. View PublicationCatalog #: Product Name: 07920 ACCUTASE™ 05790 BrainPhys™ Neuronal Medium 05792 BrainPhys™ Neuronal Medium and SM1 Kit 05794 BrainPhys™ Primary Neuron Kit 05795 BrainPhys™ hPSC Neuron Kit 05793 BrainPhys™ Neuronal Medium N2-A & SM1 Kit Catalog #: 07920 Product Name: ACCUTASE™ Catalog #: 05790 Product Name: BrainPhys™ Neuronal Medium Catalog #: 05792 Product Name: BrainPhys™ Neuronal Medium and SM1 Kit Catalog #: 05794 Product Name: BrainPhys™ Primary Neuron Kit Catalog #: 05795 Product Name: BrainPhys™ hPSC Neuron Kit Catalog #: 05793 Product Name: BrainPhys™ Neuronal Medium N2-A & SM1 Kit - ReferenceBershteyn M et al. (APR 2017) Cell stem cell 20 4 435--449.e4
Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia.
Classical lissencephaly is a genetic neurological disorder associated with mental retardation and intractable epilepsy, and Miller-Dieker syndrome (MDS) is the most severe form of the disease. In this study, to investigate the effects of MDS on human progenitor subtypes that control neuronal output and influence brain topology, we analyzed cerebral organoids derived from control and MDS-induced pluripotent stem cells (iPSCs) using time-lapse imaging, immunostaining, and single-cell RNA sequencing. We saw a cell migration defect that was rescued when we corrected the MDS causative chromosomal deletion and severe apoptosis of the founder neuroepithelial stem cells, accompanied by increased horizontal cell divisions. We also identified a mitotic defect in outer radial glia, a progenitor subtype that is largely absent from lissencephalic rodents but critical for human neocortical expansion. Our study, therefore, deepens our understanding of MDS cellular pathogenesis and highlights the broad utility of cerebral organoids for modeling human neurodevelopmental disorders. View PublicationCatalog #: Product Name: 05872 ReLeSR™ 85850 mTeSR™1 07920 ACCUTASE™ Catalog #: 05872 Product Name: ReLeSR™ Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 07920 Product Name: ACCUTASE™ - ReferenceWerner A et al. (SEP 2015) Nature 525 7570 523--527
Cell-fate determination by ubiquitin-dependent regulation of translation
Metazoan development depends on the accurate execution of differentiation programs that allow pluripotent stem cells to adopt specific fates. Differentiation requires changes to chromatin architecture and transcriptional networks, yet whether other regulatory events support cell-fate determination is less well understood. Here we identify the ubiquitin ligase CUL3 in complex with its vertebrate-specific substrate adaptor KBTBD8 (CUL3(KBTBD8)) as an essential regulator of human and Xenopus tropicalis neural crest specification. CUL3(KBTBD8) monoubiquitylates NOLC1 and its paralogue TCOF1, the mutation of which underlies the neurocristopathy Treacher Collins syndrome. Ubiquitylation drives formation of a TCOF1-NOLC1 platform that connects RNA polymerase I with ribosome modification enzymes and remodels the translational program of differentiating cells in favour of neural crest specification. We conclude that ubiquitin-dependent regulation of translation is an important feature of cell-fate determination. View PublicationCatalog #: Product Name: 05872 ReLeSR™ 34811 AggreWell™800 05835 STEMdiff™ Neural Induction Medium 07920 ACCUTASE™ Catalog #: 05872 Product Name: ReLeSR™ Catalog #: 34811 Product Name: AggreWell™800 Catalog #: 05835 Product Name: STEMdiff™ Neural Induction Medium Catalog #: 07920 Product Name: ACCUTASE™ - ReferenceNoormohammadi A et al. (NOV 2016) Nature Communications 7 13649
Somatic increase of CCT8 mimics proteostasis of human pluripotent stem cells and extends C. elegans lifespan
Human embryonic stem cells can replicate indefinitely while maintaining their undifferentiated state and, therefore, are immortal in culture. This capacity may demand avoidance of any imbalance in protein homeostasis (proteostasis) that would otherwise compromise stem cell identity. Here we show that human pluripotent stem cells exhibit enhanced assembly of the TRiC/CCT complex, a chaperonin that facilitates the folding of 10% of the proteome. We find that ectopic expression of a single subunit (CCT8) is sufficient to increase TRiC/CCT assembly. Moreover, increased TRiC/CCT complex is required to avoid aggregation of mutant Huntingtin protein. We further show that increased expression of CCT8 in somatic tissues extends Caenorhabditis elegans lifespan in a TRiC/CCT-dependent manner. Ectopic expression of CCT8 also ameliorates the age-associated demise of proteostasis and corrects proteostatic deficiencies in worm models of Huntington's disease. Our results suggest proteostasis is a common principle that links organismal longevity with hESC immortality. View PublicationCatalog #: Product Name: 85850 mTeSR™1 05835 STEMdiff™ Neural Induction Medium 07920 ACCUTASE™ 07174 Gentle Cell Dissociation Reagent Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 05835 Product Name: STEMdiff™ Neural Induction Medium Catalog #: 07920 Product Name: ACCUTASE™ Catalog #: 07174 Product Name: Gentle Cell Dissociation Reagent - ReferencePhondeechareon T et al. (OCT 2016) Annals of hematology 95 10 1617--1625
Generation of induced pluripotent stem cells as a potential source of hematopoietic stem cells for transplant in PNH patients.
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hemolytic anemia caused by lack of CD55 and CD59 on blood cell membrane leading to increased sensitivity of blood cells to complement. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy for PNH, however, lack of HLA-matched donors and post-transplant complications are major concerns. Induced pluripotent stem cells (iPSCs) derived from patients are an attractive source for generating autologous HSCs to avoid adverse effects resulting from allogeneic HSCT. The disease involves only HSCs and their progeny; therefore, other tissues are not affected by the mutation and may be used to produce disease-free autologous HSCs. This study aimed to derive PNH patient-specific iPSCs from human dermal fibroblasts (HDFs), characterize and differentiate to hematopoietic cells using a feeder-free protocol. Analysis of CD55 and CD59 expression was performed before and after reprogramming, and hematopoietic differentiation. Patients' dermal fibroblasts expressed CD55 and CD59 at normal levels and the normal expression remained after reprogramming. The iPSCs derived from PNH patients had typical pluripotent properties and differentiation capacities with normal karyotype. After hematopoietic differentiation, the differentiated cells expressed early hematopoietic markers (CD34 and CD43) with normal CD59 expression. The iPSCs derived from HDFs of PNH patients have normal levels of CD55 and CD59 expression and hold promise as a potential source of HSCs for autologous transplantation to cure PNH patients. View PublicationCatalog #: Product Name: 04435 MethoCult™ H4435 Enriched 85850 mTeSR™1 07920 ACCUTASE™ 07923 Dispase (1 U/mL) Catalog #: 04435 Product Name: MethoCult™ H4435 Enriched Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 07920 Product Name: ACCUTASE™ Catalog #: 07923 Product Name: Dispase (1 U/mL) - ReferenceŘeboun M et al. ( 2016) Folia biologica 62 2 82--89
X-Chromosome Inactivation Analysis in Different Cell Types and Induced Pluripotent Stem Cells Elucidates the Disease Mechanism in a Rare Case of Mucopolysaccharidosis Type II in a Female.
Mucopolysaccharidosis type II (MPS II) is an X-linked lysosomal storage disorder resulting from deficiency of iduronate-2-sulphatase activity. The disease manifests almost exclusively in males; only 16 symptomatic heterozygote girls have been reported so far. We describe the results of X-chromosome inactivation analysis in a 5-year-old girl with clinically severe disease and heterozygous mutation p.Arg468Gln in the IDS gene. X inactivation analysed at three X-chromosome loci showed extreme skewing (96/4 to 99/1) in two patient's cell types. This finding correlated with exclusive expression of the mutated allele. Induced pluripotent stem cells (iPSC) generated from the patient's peripheral blood demonstrated characteristic pluripotency markers, deficiency of enzyme activity, and mutation in the IDS gene. These cells were capable of differentiation into other cell types (cardiomyocytes, neurons). In MPS II iPSC clones, the X inactivation ratio remained highly skewed in culture conditions that led to partial X inactivation reset in Fabry disease iPSC clones. Our data, in accordance with the literature, suggest that extremely skewed X inactivation favouring the mutated allele is a crucial condition for manifestation of MPS II in females. This suggests that the X inactivation status and enzyme activity have a prognostic value and should be used to evaluate MPS II in females. For the first time, we show generation of iPSC from a symptomatic MPS II female patient that can serve as a cellular model for further research of the pathogenesis and treatment of this disease. View PublicationCatalog #: Product Name: 85850 mTeSR™1 07920 ACCUTASE™ Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 07920 Product Name: ACCUTASE™ - ReferenceMandegar MA et al. (APR 2016) Cell Stem Cell 18 4 541--553
CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs
Developing technologies for efficient and scalable disruption of gene expression will provide powerful tools for studying gene function, developmental pathways, and disease mechanisms. Here, we develop clustered regularly interspaced short palindromic repeat interference (CRISPRi) to repress gene expression in human induced pluripotent stem cells (iPSCs). CRISPRi, in which a doxycycline-inducible deactivated Cas9 is fused to a KRAB repression domain, can specifically and reversibly inhibit gene expression in iPSCs and iPSC-derived cardiac progenitors, cardiomyocytes, and T lymphocytes. This gene repression system is tunable and has the potential to silence single alleles. Compared with CRISPR nuclease (CRISPRn), CRISPRi gene repression is more efficient and homogenous across cell populations. The CRISPRi system in iPSCs provides a powerful platform to perform genome-scale screens in a wide range of iPSC-derived cell types, dissect developmental pathways, and model disease. View PublicationCatalog #: Product Name: 85850 mTeSR™1 07920 ACCUTASE™ Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 07920 Product Name: ACCUTASE™ - ReferenceFu X et al. (FEB 2016) Plos One 11 2 e0148819
High-Dose Fluoride Impairs the Properties of Human Embryonic Stem Cells via JNK Signaling
Fluoride is a ubiquitous natural substance that is often used in dental products to prevent dental caries. The biphasic actions of fluoride imply that excessive systemic exposure to fluoride can cause harmful effects on embryonic development in both animal models and humans. However, insufficient information is available on the effects of fluoride on human embryonic stem cells (hESCs), which is a novel in vitro humanized model for analyzing the embryotoxicities of chemical compounds. Therefore, we investigated the effects of sodium fluoride (NaF) on the proliferation, differentiation and viability of H9 hESCs. For the first time, we showed that 1 mM NaF did not significantly affect the proliferation of hESCs but did disturb the gene expression patterns of hESCs during embryoid body (EB) differentiation. Higher doses of NaF (2 mM and above) markedly decreased the viability and proliferation of hESCs. The mode and underlying mechanism of high-dose NaF-induced cell death were further investigated by assessing the sub-cellular morphology, mitochondrial membrane potential (MMP), caspase activities, cellular reactive oxygen species (ROS) levels and activation of mitogen-activated protein kinases (MAPKs). High-dose NaF caused the death of hESCs via apoptosis in a caspase-mediated but ROS-independent pathway, coupled with an increase in the phospho-c-Jun N-terminal kinase (p-JNK) levels. Pretreatment with a pJNK-specific inhibitor (SP600125) could effectively protect hESCs from NaF-induced cell death in a concentration- and time-dependent manner. These findings suggest that NaF might interfere with early human embryogenesis by disturbing the specification of the three germ layers as well as osteogenic lineage commitment and that high-dose NaF could cause apoptosis through a JNK-dependent pathway in hESCs. View PublicationCatalog #: Product Name: 85850 mTeSR™1 07920 ACCUTASE™ Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 07920 Product Name: ACCUTASE™ - ReferenceGuye P et al. (JAN 2015) Nature Communications 7 1--12
Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6
Human induced pluripotent stem cells (hiPSCs) have potential for personalized and regenerative medicine. While most of the methods using these cells have focused on deriving homogenous populations of specialized cells, there has been modest success in producing hiPSC-derived organotypic tissues or organoids. Here we present a novel approach for generating and then co-differentiating hiPSC-derived progenitors. With a genetically engineered pulse of GATA-binding protein 6 (GATA6) expression, we initiate rapid emergence of all three germ layers as a complex function of GATA6 expression levels and tissue context. Within 2 weeks we obtain a complex tissue that recapitulates early developmental processes and exhibits a liver bud-like phenotype, including haematopoietic and stromal cells as well as a neuronal niche. Collectively, our approach demonstrates derivation of complex tissues from hiPSCs using a single autologous hiPSCs as source and generates a range of stromal cells that co-develop with parenchymal cells to form tissues. View PublicationCatalog #: Product Name: 04434 MethoCult™ H4434 Classic 85850 mTeSR™1 05270 STEMdiff™ APEL™2 Medium 07920 ACCUTASE™ 36254 DMEM/F-12 with 15 mM HEPES 07923 Dispase (1 U/mL) 04464 Starter Kit for MethoCult™ H4434 Classic Catalog #: 04434 Product Name: MethoCult™ H4434 Classic Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 05270 Product Name: STEMdiff™ APEL™2 Medium Catalog #: 07920 Product Name: ACCUTASE™ Catalog #: 36254 Product Name: DMEM/F-12 with 15 mM HEPES Catalog #: 07923 Product Name: Dispase (1 U/mL) Catalog #: 04464 Product Name: Starter Kit for MethoCult™ H4434 Classic
Shop By
Filter Results
Filters:
- Resource Type Reference Remove This Item
- Clear All
- Area of Interest
-
- Cancer 1 item
- Cell Line Development 3 items
- Drug Discovery and Toxicity Testing 3 items
- Immunology 1 item
- Neuroscience 4 items
- Stem Cell Biology 47 items
- Transplantation Research 1 item
- Brand
-
- AggreWell 6 items
- BrainPhys 3 items
- CryoStor 1 item
- EasySep 1 item
- MethoCult 3 items
- MyeloCult 1 item
- NeuroCult 1 item
- STEMdiff 2 items
- TeSR 47 items
- Cell Type
-
- Hematopoietic Stem and Progenitor Cells 1 item
- Neural Cells, PSC-Derived 1 item
- Neural Stem and Progenitor Cells 5 items
- Neurons 2 items
- Pluripotent Stem Cells 46 items
- T Cells, CD4+ 1 item