Showing 1 - 12 of 39 results for "05411"
1 Product
- ReferenceJ.-H. Kim et al. (mar 2020) International journal of molecular sciences 21 6
Thymosin $\beta$4-Enhancing Therapeutic Efficacy of Human Adipose-Derived Stem Cells in Mouse Ischemic Hindlimb Model.
Thymosin $\beta$4 (T$\beta$4) is a G-actin sequestering protein that contributes to diverse cellular activities, such as migration and angiogenesis. In this study, the beneficial effects of combined cell therapy with T$\beta$4 and human adipose-derived stem cells (hASCs) in a mouse ischemic hindlimb model were investigated. We observed that exogenous treatment with T$\beta$4 enhanced endogenous TMSB4X mRNA expression and promoted morphological changes (increased cell length) in hASCs. Interestingly, T$\beta$4 induced the active state of hASCs by up-regulating intracellular signaling pathways including the PI3K/AKT/mTOR and MAPK/ERK pathways. Treatment with T$\beta$4 significantly increased cell migration and sprouting from microbeads. Moreover, additional treatment with T$\beta$4 promoted the endothelial differentiation potential of hASCs by up-regulating various angiogenic genes. To evaluate the in vivo effects of the T$\beta$4-hASCs combination on vessel recruitment, dorsal window chambers were transplanted, and the co-treated mice were found to have a significantly increased number of microvessel branches. Transplantation of hASCs in combination with T$\beta$4 was found to improve blood flow and attenuate limb or foot loss post-ischemia compared to transplantation with hASCs alone. Taken together, the therapeutic application of hASCs combined with T$\beta$4 could be effective in enhancing endothelial differentiation and vascularization for treating hindlimb ischemia. View PublicationCatalog #: Product Name: 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) - ReferenceHussain I et al. (JUL 2012) Cell biology international 36 7 595--600
New approach to isolate mesenchymal stem cell (MSC) from human umbilical cord blood.
HUCB (human umbilical cord blood) has been frequently used in clinical allogeneic HSC (haemopoietic stem cell) transplant. However, HUCB is poorly recognized as a rich source of MSC (mesenchymal stem cell). The aim of this study has been to establish a new method for isolating large number of MSC from HUCB to recognize it as a good source of MSC. HUCB samples were collected from women following their elective caesarean section. The new method (Clot Spot method) was carried out by explanting HUCB samples in mesencult complete medium and maintained in 37°C, in a 5% CO2 and air incubator. MSC presence was established by quantitative and qualitative immunophenotyping of cells and using FITC attached to MSC phenotypic markers (CD29, CD73, CD44 and CD105). Haematopoietic antibodies (CD34 and CD45) were used as negative control. MSC differentiation was examined in neurogenic and adipogenic media. Immunocytochemistry was carried out for the embryonic markers: SOX2 (sex determining region Y-box 2), OLIG-4 (oligodendrocyte-4) and FABP-4 (fatty acid binding protein-4). The new method was compared with the conventional Rosset Sep method. MSC cultures using the Clot Spot method showed 3-fold increase in proliferation rate compared with conventional method. Also, the cells showed high expression of MSC markers CD29, CD73, CD44 and CD105, but lacked the expression of specific HSC markers (CD34 and CD45). The isolated MSC showed some differentiation by expressing the neurogenic (SOX2 and Olig4) and adipogenic (FABP-4) markers respectively. In conclusion, HUCB is a good source of MSC using this new technique. View PublicationCatalog #: Product Name: 15128 RosetteSep™ Human Mesenchymal Stem Cell Enrichment Cocktail 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 15128 Product Name: RosetteSep™ Human Mesenchymal Stem Cell Enrichment Cocktail Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) - ReferenceAanei CM et al. (NOV 2011) Experimental cell research 317 18 2616--29
Focal adhesion protein abnormalities in myelodysplastic mesenchymal stromal cells.
Direct cell-cell contact between haematopoietic progenitor cells (HPCs) and their cellular microenvironment is essential to maintain 'stemness'. In cancer biology, focal adhesion (FA) proteins are involved in survival signal transduction in a wide variety of human tumours. To define the role of FA proteins in the haematopoietic microenvironment of myelodysplastic syndromes (MDS), CD73-positive mesenchymal stromal cells (MSCs) were immunostained for paxillin, pFAK [Y(397)], and HSP90α/β and p130CAS, and analysed for reactivity, intensity and cellular localisation. Immunofluorescence microscopy allowed us to identify qualitative and quantitative differences, and subcellular localisation analysis revealed that in pathological MSCs, paxillin, pFAK [Y(397)], and HSP90α/β formed nuclear molecular complexes. Increased expression of paxillin, pFAK [Y(397)], and HSP90α/β and enhanced nuclear co-localisation of these proteins correlated with a consistent proliferative advantage in MSCs from patients with refractory anaemia with excess blasts (RAEB) and negatively impacted clonogenicity of HPCs. These results suggest that signalling via FA proteins could be implicated in HPC-MSC interactions. Further, because FAK is an HSP90α/β client protein, these results suggest the utility of HSP90α/β inhibition as a target for adjuvant therapy for myelodysplasia. View PublicationCatalog #: Product Name: 05426 Animal Component-Free Cell Dissociation Kit 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 05426 Product Name: Animal Component-Free Cell Dissociation Kit Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) - ReferenceMendelson A et al. (OCT 2011) FASEB journal : official publication of the Federation of American Societies for Experimental Biology 25 10 3496--504
Chondrogenesis by chemotactic homing of synovium, bone marrow, and adipose stem cells in vitro.
Cell transplantation has been well explored for cartilage regeneration. We recently showed that the entire articular surface of a synovial joint can regenerate by endogenous cell homing and without cell transplantation. However, the sources of endogenous cells that regenerate articular cartilage remain elusive. Here, we studied whether cytokines not only chemotactically recruit adipose stem cells (ASCs), mesenchymal stem cells (MSCs), and synovium stem cells (SSCs) but also induce chondrogenesis of the recruited cells. Recombinant human transforming growth factor-β3 (TGF-β3; 100 ng) and/or recombinant human stromal derived factor-1β (SDF-1β; 100 ng) was control released into an acellular collagen sponge cube with underlying ASCs, MSCs, or SSCs in monolayer culture. Although all cell types randomly migrated into the acellular collagen sponge cube, TGF-β3 and/or SDF-1β recruited significantly more cells than the cytokine-free control group. In 6 wk, TGF-β3 alone recruited substantial numbers of ASCs (558±65) and MSCs (302±52), whereas codelivery of TGF-β3 and SDF-1β was particularly chemotactic to SSCs (400±120). Proliferation of the recruited cells accounted for some, but far from all, of the observed cellularity. TGF-β3 and SDF-1β codelivery induced significantly higher aggrecan gene expression than the cytokine-free group for ASCs, MSCs, and SSCs. Type II collagen gene expression was also significantly higher for ASCs and SSCs by SDF-1 and TGF-β3 codelivery. Remarkably, the expression of aggrecan and type II collagen was detected among all cell types. Thus, homing of multiple stem/progenitor cell populations may potentially serve as an alternative or adjunctive approach to cell transplantation for cartilage regeneration. View PublicationCatalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) - ReferenceCiraci E et al. (AUG 2011) Blood 118 8 2105--15
Adult human circulating CD34 cells can differentiate into hematopoietic and endothelial cells.
A precise identification of adult human hemangioblast is still lacking. To identify circulating precursors having the developmental potential of the hemangioblast, we established a new ex vivo long-term culture model supporting the differentiation of both hematopoietic and endothelial cell lineages. We identified from peripheral blood a population lacking the expression of CD34, lineage markers, CD45 and CD133 (CD34⁻Lin⁻CD45⁻CD133⁻ cells), endowed with the ability to differentiate after a 6-week culture into both hematopoietic and endothelial lineages. The bilineage potential of CD34⁻Lin⁻CD45⁻CD133⁻ cells was determined at the single-cell level in vitro and was confirmed by transplantation into NOD/SCID mice. In vivo, CD34⁻Lin⁻CD45⁻CD133⁻ cells showed the ability to reconstitute hematopoietic tissue and to generate functional endothelial cells that contribute to new vessel formation during tumor angiogenesis. Molecular characterization of CD34⁻Lin⁻D45⁻CD133⁻ cells unveiled a stem cell profile compatible with both hematopoietic and endothelial potentials, characterized by the expression of c-Kit and CXCR4 as well as EphB4, EphB2, and ephrinB2. Further molecular and functional characterization of CD34⁻Lin⁻CD45⁻CD133⁻ cells will help dissect their physiologic role in blood and blood vessel maintenance and repair in adult life. View PublicationCatalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) - ReferenceHenrich D et al. (NOV 2010) Injury 41 Suppl 2 S62--8
RIA reamings and hip aspirate: a comparative evaluation of osteoprogenitor and endothelial progenitor cells.
Autologous bone grafting represents the gold standard modality to treat atrophic non-unions by virtue of its osteoinductive and osteoconductive properties. The common harvest site is the iliac crest, but there are major concerns due to limited volume and considerable donor site morbidity. Alternative autologous bone graft can be harvested from the femoral bone cavity using a newly developed 'Reamer Irrigator Aspirator' (RIA). Osseous aspirated particles can be recovered with a filter and used as auto-graft. The purpose of this study was to compare the concentration and differentiation potential of mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC) harvested with the RIA technique or from the iliac crest, respectively. RIA aspirate was collected from 26 patients undergoing intramedullary nailing of femur fractures. Iliac crest aspirate was collected from 38 patients undergoing bone graft transplantation. Concentration of MSC and EPC were assessed by means of the MSC colony assay, EPC culture assay and flowcytometry (CD34, CD133, VEGF-R2), respectively. Osteogenic differentiation of MSC's was measured by von Kossa staining. Patients in both groups did not significantly differ regarding their age, gender or pre-existing health conditions. In comparison to aspirates obtained from iliac crest the RIA aspirates from the femur contained a significantly higher percentage of CD34+ progenitor cells, a significantly higher concentration of MSC and a significantly higher concentration of early EPC. The percentage of late EPC did not differ between both sites. Moreover, the capability of MSC for calcium deposition was significantly enhanced in MSC obtained with RIA. Our results show that RIA aspirate is a rich source for different types of autologous progenitor cells, which can be used to accelerate healing of bone and other musculoskeletal tissues. View PublicationCatalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) - ReferenceCutler AJ et al. (DEC 2010) Journal of immunology (Baltimore, Md. : 1950) 185 11 6617--23
Umbilical cord-derived mesenchymal stromal cells modulate monocyte function to suppress T cell proliferation.
Mesenchymal stromal cells (MSCs) may be derived from a variety of tissues, with human umbilical cord (UC) providing an abundant and noninvasive source. Human UC-MSCs share similar in vitro immunosuppressive properties as MSCs obtained from bone marrow and cord blood. However, the mechanisms and cellular interactions used by MSCs to control immune responses remain to be fully elucidated. In this paper, we report that suppression of mitogen-induced T cell proliferation by human UC-, bone marrow-, and cord blood-MSCs required monocytes. Removal of monocytes but not B cells from human adult PBMCs (PBMNCs) reduced the immunosuppressive effects of MSCs on T cell proliferation. There was rapid modulation of a number of cell surface molecules on monocytes when PBMCs or alloantigen-activated PBMNCs were cultured with UC-MSCs. Indomethacin treatment significantly inhibited the ability of UC-MSCs to suppress T cell proliferation, indicating an important role for PGE(2). Monocytes purified from UC-MSC coculture had significantly reduced accessory cell and allostimulatory function when tested in subsequent T cell proliferation assays, an effect mediated in part by UC-MSC PGE(2) production and enhanced by PBMNC alloactivation. Therefore, we identify monocytes as an essential intermediary through which UC-MSCs mediate their suppressive effects on T cell proliferation. View PublicationCatalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) - ReferenceYañ et al. (NOV 2010) Experimental cell research 316 19 3109--23
Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells.
Mesenchymal stromal cells (MSCs) have important immunosuppressive properties, but the mechanisms and soluble factors involved in these effects remain unclear. We have studied prostaglandin-E2 (PGE2) as a possible candidate implied in adipose tissue-derived MSCs (Ad-MSCs) immunosuppressive properties over dendritic cells and T lymphocytes, compared to bone marrow derived MSCs (BM-MSCs). We found that both MSCs inhibited the maturation of myeloid-DCs and plasmocytoid-DCs. High levels of PGE2 were detected in DCs/MSCs co-cultures. Its blockade with indomethacin (IDM) allowed plasmocytoid-DCs but not myeloid-DCs maturation. Additionally, high levels of PGE2 were found in co-cultures in which Ad-MSCs or BM-MSCs inhibited activated T cells proliferation and pro-inflammatory cytokines production. PGE2 blockade by IDM preserved T lymphocytes proliferation but did not restore the pro-inflammatory cytokines secretion. However, an increased expression of transcription factors and cytokines genes involved in the Th1/Th2 differentiation pathway was detected in the T cells co-cultured with Ad-MSCs, but not with BM-MSCs. In conclusion, we propose that PGE2 is a soluble factor mediating most of the immunosuppressive effects of Ad-MSCs and BM-MSCs over p-DCs maturation and activated T lymphocytes proliferation and cytokine secretion. View PublicationCatalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) - ReferenceSeebach C et al. (JUL 2010) Injury 41 7 731--8
Comparison of six bone-graft substitutes regarding to cell seeding efficiency, metabolism and growth behaviour of human mesenchymal stem cells (MSC) in vitro.
INTRODUCTION: Various synthetic bone-graft substitutes are used commercially as osteoconductive scaffolds in the treatment of bone defects and fractures. The role of bone-graft substitutes is changing from osteoconductive conduits for growth to an delivery system for biologic fracture treatments. Achieving optimal bone regeneration requires biologics (e.g. MSC) and using the correct scaffold incorporated into a local environment for bone regeneration. The need for an unlimited supply with high quality bone-graft substitutes continue to find alternatives for bone replacement surgery. MATERIALS AND METHODS: This in vitro study investigates cell seeding efficiency, metabolism, gene expression and growth behaviour of MSC sown on six commercially clinical available bone-graft substitutes in order to define their biological properties: synthetic silicate-substituted porous hydroxyapatite (Actifuse ABX), synthetic alpha-TCP (Biobase), synthetic beta-TCP (Vitoss), synthetic beta-TCP (Chronos), processed human cancellous allograft (Tutoplast) and processed bovines hydroxyapatite ceramic (Cerabone). 250,000 MSC derived from human bone marrow (n=4) were seeded onto the scaffolds, respectively. On days 2, 6 and 10 the adherence of MSC (fluorescence microscopy) and cellular activity (MTT assay) were analysed. Osteogenic gene expression (cbfa-1) was analysed by RT-PCR and scanning electron microscopy was performed. RESULTS: The highest number of adhering cells was found on Tutoplast (e.g. day 6: 110.0+/-24.0 cells/microscopic field; ptextless0.05) followed by Chronos (47.5+/-19.5, ptextless0.05), Actifuse ABX (19.1+/-4.4), Biobase (15.7+/-9.9), Vitoss (8.8+/-8.7) and Cerabone (8.1+/-2.2). MSC seeded onto Tutoplast showed highest metabolic activity and gene expression of cbfa-1. These data are confirmed by scanning electron microscopy. The cell shapes varied from round-shaped cells to wide spread cells and cell clusters, depending on the bone-graft substitutes. Processed human cancellous allograft is a well-structured and biocompatible scaffold for ingrowing MSC in vitro. Of all other synthetical scaffolds, beta-tricalcium phosphate (Chronos) have shown the best growth behaviour for MSC. DISCUSSION: Our results indicate that various bone-graft substitutes influence cell seeding efficiency, metabolic activity and growth behaviour of MSC in different manners. We detected a high variety of cellular integration of MSC in vitro, which may be important for bony integration in the clinical setting. View PublicationCatalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) - ReferencePitchford SC et al. (FEB 2010) Journal of pharmacological and toxicological methods 61 2 113--21
Troubleshooting: Quantification of mobilization of progenitor cell subsets from bone marrow in vivo.
INTRODUCTION: The molecular mechanisms that control the mobilization of specific stem cell subsets from the bone marrow are currently being intensely investigated. It is anticipated that boosting the mobilization of these stem cells via pharmacological intervention will not only produce more effective strategies for bone marrow transplant patients, but also provide novel therapeutic approaches for tissue regeneration. METHODS: Measurement of stem cell mobilization by sampling peripheral blood is problematic because it is technically difficult to accurately determine absolute numbers of rare progenitor cells by blood sampling. Furthermore a rise in progenitors may be caused by release of stem cells from tissues other than the bone marrow (e.g. spleen and adipose), or indeed an inhibition of stem cell homing back to the bone marrow or other tissues. Finally it is not possible to distinguish whether the pharmacological agent is acting directly at the level of the bone marrow or mobilizing progenitors by a distinct indirect mechanism. To resolve these problems, we have developed a technique that allows perfusion of the vasculature of the hind limb bone marrow in situ in mice. In this system, the femoral artery and vein are cannulated in situ such that the femur and tibia bone marrow are perfused in isolation under anaesthesia. As such, pharmacological agents can be administered directly into the bone marrow vasculature. Mobilized cells are then collected via the femoral vein and colony assays performed in defined growth media to allow identification of haematopoietic, endothelial, and mesenchymal progenitor cells. We have used this system to determine the ability of a CXCR4 antagonist to mobilize these distinct types of progenitor cells from the bone marrow of mice pre-conditioned with either G-CSF or VEGF. RESULTS AND CONCLUSION: This isolated hind limb perfusion system has allowed comparisons to be made between cytokines (G-CSF and VEGF) that act chronically, either alone or in combination with agents that act acutely on the bone marrow (CXCR4 antagonist) on their ability to directly mobilize specific populations of stem cells. Data obtained therefore gives a more accurate understanding of the efficacy of different mobilizing strategies compared to peripheral blood analysis. View PublicationCatalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) - ReferenceMenendez P et al. (DEC 2009) The Journal of experimental medicine 206 13 3131--41
Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene.
MLL-AF4 fusion is a hallmark genetic abnormality in infant B-acute lymphoblastic leukemia (B-ALL) known to arise in utero. The cellular origin of leukemic fusion genes during human development is difficult to ascertain. The bone marrow (BM) microenvironment plays an important role in the pathogenesis of several hematological malignances. BM mesenchymal stem cells (BM-MSC) from 38 children diagnosed with cytogenetically different acute leukemias were screened for leukemic fusion genes. Fusion genes were absent in BM-MSCs of childhood leukemias carrying TEL-AML1, BCR-ABL, AML1-ETO, MLL-AF9, MLL-AF10, MLL-ENL or hyperdiploidy. However, MLL-AF4 was detected and expressed in BM-MSCs from all cases of MLL-AF4(+) B-ALL. Unlike leukemic blasts, MLL-AF4(+) BM-MSCs did not display monoclonal Ig gene rearrangements. Endogenous or ectopic expression of MLL-AF4 exerted no effect on MSC culture homeostasis. These findings suggest that MSCs may be in part tumor-related, highlighting an unrecognized role of the BM milieu on the pathogenesis of MLL-AF4(+) B-ALL. MLL-AF4 itself is not sufficient for MSC transformation and the expression of MLL-AF4 in MSCs is compatible with a mesenchymal phenotype, suggesting a differential impact in the hematopoietic system and mesenchyme. The absence of monoclonal rearrangements in MLL-AF4(+) BM-MSCs precludes the possibility of cellular plasticity or de-differentiation of B-ALL blasts and suggests that MLL-AF4 might arise in a population of prehematopoietic precursors. View PublicationCatalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) - ReferenceWang L-S et al. (FEB 2010) Biomaterials 31 6 1148--57
Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture.
We report an injectable hydrogel scaffold system with tunable stiffness for controlling the proliferation rate and differentiation of human mesenchymal stem cells (hMSCs) in a three-dimensional (3D) context in normal growth media. The hydrogels composed of gelatin-hydroxyphenylpropionic acid (Gtn-HPA) conjugate were formed using the oxidative coupling of HPA moieties catalyzed by hydrogen peroxide (H(2)O(2)) and horseradish peroxidase (HRP). The stiffness of the hydrogels was readily tuned by varying the H(2)O(2) concentration without changing the concentration of polymer precursor. We found that the hydrogel stiffness strongly affected the cell proliferation rates. The rate of hMSC proliferation increased with the decrease in the stiffness of the hydrogel. Also, the neurogenesis of hMSCs was controlled by the hydrogel stiffness in a 3D context without the use of any additional biochemical signal. These cells which were cultured in hydrogels with lower stiffness for 3 weeks expressed much more neuronal protein markers compared to those cultured within stiffer hydrogels for the same period of time. View PublicationCatalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human)
1 Product
Shop By
Filter Results
Filters:
- Resource Type Reference Remove This Item
- Clear All
- Area of Interest
-
- Cancer 1 item
- Immunology 5 items
- Stem Cell Biology 33 items
- Brand
-
- MesenCult 38 items
- MethoCult 2 items
- RosetteSep 2 items
- Cell Type
-
- Hematopoietic Stem and Progenitor Cells 1 item
- Mesenchymal Stem and Progenitor Cells 34 items