Showing 1 - 12 of 63 results for "04434"
- ReferenceJ. Bae et al. (jan 2020) Leukemia 34 1 210--223
BCMA peptide-engineered nanoparticles enhance induction and function of antigen-specific CD8+ cytotoxic T lymphocytes against multiple myeloma: clinical applications.
The purpose of these studies was to develop and characterize B-cell maturation antigen (BCMA)-specific peptide-encapsulated nanoparticle formulations to efficiently evoke BCMA-specific CD8+ cytotoxic T lymphocytes (CTL) with poly-functional immune activities against multiple myeloma (MM). Heteroclitic BCMA72-80 [YLMFLLRKI] peptide-encapsulated liposome or poly(lactic-co-glycolic acid) (PLGA) nanoparticles displayed uniform size distribution and increased peptide delivery to human dendritic cells, which enhanced induction of BCMA-specific CTL. Distinct from liposome-based nanoparticles, PLGA-based nanoparticles demonstrated a gradual increase in peptide uptake by antigen-presenting cells, and induced BCMA-specific CTL with higher anti-tumor activities (CD107a degranulation, CTL proliferation, and IFN-$\gamma$/IL-2/TNF-$\alpha$ production) against primary CD138+ tumor cells and MM cell lines. The improved functional activities were associated with increased Tetramer+/CD45RO+ memory CTL, CD28 upregulation on Tetramer+ CTL, and longer maintenance of central memory (CCR7+ CD45RO+) CTL, with the highest anti-MM activity and less differentiation into effector memory (CCR7- CD45RO+) CTL. These results provide the framework for therapeutic application of PLGA-based BCMA immunogenic peptide delivery system, rather than free peptide, to enhance the induction of BCMA-specific CTL with poly-functional Th1-specific anti-MM activities. These results demonstrate the potential clinical utility of PLGA nanotechnology-based cancer vaccine to enhance BCMA-targeted immunotherapy against myeloma. View PublicationCatalog #: Product Name: 04434 MethoCult™ H4434 Classic 05010 STEMdiff™ Ventricular Cardiomyocyte Differentiation Kit 17877 EasySep™ Human CD138 Positive Selection Kit II Catalog #: 04434 Product Name: MethoCult™ H4434 Classic Catalog #: 05010 Product Name: STEMdiff™ Ventricular Cardiomyocyte Differentiation Kit Catalog #: 17877 Product Name: EasySep™ Human CD138 Positive Selection Kit II - ReferenceG. Schiroli et al. (apr 2019) Cell stem cell 24 4 551--565.e8
Precise Gene Editing Preserves Hematopoietic Stem Cell Function following Transient p53-Mediated DNA Damage Response.
Precise gene editing in hematopoietic stem and progenitor cells (HSPCs) holds promise for treating genetic diseases. However, responses triggered by programmable nucleases in HSPCs are poorly characterized and may negatively impact HSPC engraftment and long-term repopulation capacity. Here, we induced either one or several DNA double-stranded breaks (DSBs) with optimized zinc-finger and CRISPR/Cas9 nucleases and monitored DNA damage response (DDR) foci induction, cell-cycle progression, and transcriptional responses in HSPC subpopulations, with up to single-cell resolution. p53-mediated DDR pathway activation was the predominant response to even single-nuclease-induced DSBs across all HSPC subtypes analyzed. Excess DSB load and/or adeno-associated virus (AAV)-mediated delivery of DNA repair templates induced cumulative p53 pathway activation, constraining proliferation, yield, and engraftment of edited HSPCs. However, functional impairment was reversible when DDR burden was low and could be overcome by transient p53 inhibition. These findings provide molecular and functional evidence for feasible and seamless gene editing in HSPCs. View PublicationCatalog #: Product Name: 04434 MethoCult™ H4434 Classic Catalog #: 04434 Product Name: MethoCult™ H4434 Classic - ReferenceS. H. Park et al. (may 2019) Nucleic acids research
Highly efficient editing of the beta-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease.
Sickle cell disease (SCD) is a monogenic disorder that affects millions worldwide. Allogeneic hematopoietic stem cell transplantation is the only available cure. Here, we demonstrate the use of CRISPR/Cas9 and a short single-stranded oligonucleotide template to correct the sickle mutation in the beta-globin gene in hematopoietic stem and progenitor cells (HSPCs) from peripheral blood or bone marrow of patients with SCD, with 24.5 ± 7.6{\%} efficiency without selection. Erythrocytes derived from gene-edited cells showed a marked reduction of sickle cells, with the level of normal hemoglobin (HbA) increased to 25.3 ± 13.9{\%}. Gene-corrected SCD HSPCs retained the ability to engraft when transplanted into non-obese diabetic (NOD)-SCID-gamma (NSG) mice with detectable levels of gene correction 16-19 weeks post-transplantation. We show that, by using a high-fidelity SpyCas9 that maintained the same level of on-target gene modification, the off-target effects including chromosomal rearrangements were significantly reduced. Taken together, our results demonstrate efficient gene correction of the sickle mutation in both peripheral blood and bone marrow-derived SCD HSPCs, a significant reduction in sickling of red blood cells, engraftment of gene-edited SCD HSPCs in vivo and the importance of reducing off-target effects; all are essential for moving genome editing based SCD treatment into clinical practice. View PublicationCatalog #: Product Name: 04434 MethoCult™ H4434 Classic Catalog #: 04434 Product Name: MethoCult™ H4434 Classic - ReferenceM. D. McKenzie et al. (aug 2019) Cell stem cell 25 2 258--272.e9
Interconversion between Tumorigenic and Differentiated States in Acute Myeloid Leukemia.
Tumors are composed of phenotypically heterogeneous cancer cells that often resemble various differentiation states of their lineage of origin. Within this hierarchy, it is thought that an immature subpopulation of tumor-propagating cancer stem cells (CSCs) differentiates into non-tumorigenic progeny, providing a rationale for therapeutic strategies that specifically eradicate CSCs or induce their differentiation. The clinical success of these approaches depends on CSC differentiation being unidirectional rather than reversible, yet this question remains unresolved even in prototypically hierarchical malignancies, such as acute myeloid leukemia (AML). Here, we show in murine and human models of AML that, upon perturbation of endogenous expression of the lineage-determining transcription factor PU.1 or withdrawal of established differentiation therapies, some mature leukemia cells can de-differentiate and reacquire clonogenic and leukemogenic properties. Our results reveal plasticity of CSC maturation in AML, highlighting the need to therapeutically eradicate cancer cells across a range of differentiation states. View PublicationCatalog #: Product Name: 03434 MethoCult™ GF M3434 04236 MethoCult™ SF H4236 04434 MethoCult™ H4434 Classic 09600 StemSpan™ SFEM 09605 StemSpan™ SFEM II Catalog #: 03434 Product Name: MethoCult™ GF M3434 Catalog #: 04236 Product Name: MethoCult™ SF H4236 Catalog #: 04434 Product Name: MethoCult™ H4434 Classic Catalog #: 09600 Product Name: StemSpan™ SFEM Catalog #: 09605 Product Name: StemSpan™ SFEM II - ReferenceWu X et al. (JAN 2018) Cell 172 3 423--438.e25
Intrinsic Immunity Shapes Viral Resistance of Stem Cells.
Stem cells are highly resistant to viral infection compared to their differentiated progeny; however, the mechanism is mysterious. Here, we analyzed gene expression in mammalian stem cells and cells at various stages of differentiation. We find that, conserved across species, stem cells express a subset of genes previously classified as interferon (IFN) stimulated genes (ISGs) but that expression is intrinsic, as stem cells are refractory to interferon. This intrinsic ISG expression varies in a cell-type-specific manner, and many ISGs decrease upon differentiation, at which time cells become IFN responsive, allowing induction of a broad spectrum of ISGs by IFN signaling. Importantly, we show that intrinsically expressed ISGs protect stem cells against viral infection. We demonstrate the in vivo importance of intrinsic ISG expression for protecting stem cells and their differentiation potential during viral infection. These findings have intriguing implications for understanding stem cell biology and the evolution of pathogen resistance. View PublicationCatalog #: Product Name: 04434 MethoCult™ H4434 Classic 05110 STEMdiff™ Definitive Endoderm Kit 05711 NeuroCult™ SM1 Neuronal Supplement 05872 ReLeSR™ 72052 CHIR99021 72302 Y-27632 (Dihydrochloride) 70039 Human Peripheral Blood Plasma, Frozen 60062 Anti-Human SSEA-4 Antibody, Clone MC-813-70 60045 Anti-Human CD90 Antibody, Clone 5E10 02691 StemSpan™ CD34+ Expansion Supplement (10X) Catalog #: 04434 Product Name: MethoCult™ H4434 Classic Catalog #: 05110 Product Name: STEMdiff™ Definitive Endoderm Kit Catalog #: 05711 Product Name: NeuroCult™ SM1 Neuronal Supplement Catalog #: 05872 Product Name: ReLeSR™ Catalog #: 72052 Product Name: CHIR99021 Catalog #: 72302 Product Name: Y-27632 (Dihydrochloride) Catalog #: 70039 Product Name: Human Peripheral Blood Plasma, Frozen Catalog #: 60062 Product Name: Anti-Human SSEA-4 Antibody, Clone MC-813-70 Catalog #: 60045 Product Name: Anti-Human CD90 Antibody, Clone 5E10 Catalog #: 02691 Product Name: StemSpan™ CD34+ Expansion Supplement (10X) - ReferencePetzer AL et al. (FEB 1996) Proceedings of the National Academy of Sciences of the United States of America 93 4 1470--4
Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in vitro and their expansion in defined medium.
A major goal of experimental and clinical hematology is the identification of mechanisms and conditions that support the expansion of transplantable hematopoietic stem cells. In normal marrow, such cells appear to be identical to (or represent a subset of) a population referred to as long-term-culture-initiating cells (LTC-ICs) so-named because of their ability to produce colony-forming cell (CFC) progeny for textgreater or = 5 weeks when cocultured with stromal fibroblasts. Some expansion of LTC-ICs in vitro has recently been described, but identification of the factors required and whether LTC-IC self-renewal divisions are involved have remained unresolved issues. To address these issues, we examined the maintenance and/or generation of LTC-ICs from single CD34+ CD38- cells cultured for variable periods under different culture conditions. Analysis of the progeny obtained from cultures containing a feeder layer of murine fibroblasts engineered to produce steel factor, interleukin (IL)-3, and granulocyte colony-stimulating factor showed that approximately 20% of the input LTC-ICs (representing approximately 2% of the original CD34+ CD38- cells) executed self-renewal divisions within a 6-week period. Incubation of the same CD34+ CD38- starting populations as single cells in a defined (serum free) liquid medium supplemented with Flt-3 ligand, steel factor, IL-3, IL-6, granulocyte colony-stimulating factor, and nerve growth factor resulted in the proliferation of initial cells to produce clones of from 4 to 1000 cells within 10 days, approximately 40% of which included textgreater or = 1 LTC-IC. In contrast, in similar cultures containing methylcellulose, input LTC-ICs appeared to persist but not divide. Overall the LTC-IC expansion in the liquid cultures was 30-fold in the first 10 days and 50-fold by the end of another 1-3 weeks. Documentation of human LTC-IC self-renewal in vitro and identification of defined conditions that permit their extensive and rapid amplification should facilitate analysis of the molecular mechanisms underlying these processes and their exploitation for a variety of therapeutic applications. View PublicationCatalog #: Product Name: 04436 MethoCult™ SF H4436 04064 Starter Kit for MethoCult™ H4034 Optimum 04100 MethoCult™ H4100 04230 MethoCult™ H4230 04236 MethoCult™ SF H4236 04431 MethoCult™ H4431 04434 MethoCult™ H4434 Classic 05100 MyeloCult™ H5100 04464 Starter Kit for MethoCult™ H4434 Classic 04531 MethoCult™ H4531 04535 MethoCult™ H4535 Enriched Without EPO 04536 MethoCult™ SF H4536 04564 Starter Kit for MethoCult™ H4534 Classic Without EPO 04035 MethoCult™ H4035 Optimum Without EPO 04330 MethoCult™ H4330 04034 MethoCult™ H4034 Optimum 04435 MethoCult™ H4435 Enriched 04534 MethoCult™ H4534 Classic Without EPO Catalog #: 04436 Product Name: MethoCult™ SF H4436 Catalog #: 04064 Product Name: Starter Kit for MethoCult™ H4034 Optimum Catalog #: 04100 Product Name: MethoCult™ H4100 Catalog #: 04230 Product Name: MethoCult™ H4230 Catalog #: 04236 Product Name: MethoCult™ SF H4236 Catalog #: 04431 Product Name: MethoCult™ H4431 Catalog #: 04434 Product Name: MethoCult™ H4434 Classic Catalog #: 05100 Product Name: MyeloCult™ H5100 Catalog #: 04464 Product Name: Starter Kit for MethoCult™ H4434 Classic Catalog #: 04531 Product Name: MethoCult™ H4531 Catalog #: 04535 Product Name: MethoCult™ H4535 Enriched Without EPO Catalog #: 04536 Product Name: MethoCult™ SF H4536 Catalog #: 04564 Product Name: Starter Kit for MethoCult™ H4534 Classic Without EPO Catalog #: 04035 Product Name: MethoCult™ H4035 Optimum Without EPO Catalog #: 04330 Product Name: MethoCult™ H4330 Catalog #: 04034 Product Name: MethoCult™ H4034 Optimum Catalog #: 04435 Product Name: MethoCult™ H4435 Enriched Catalog #: 04534 Product Name: MethoCult™ H4534 Classic Without EPO - ReferenceFarese AM et al. (JAN 1996) Blood 87 2 581--91
Acceleration of hematopoietic reconstitution with a synthetic cytokine (SC-55494) after radiation-induced bone marrow aplasia.
The synthetic cytokine (Synthokine) SC-55494 is a high-affinity interleukin-3 (IL-3) receptor ligand that stimulates greater in vitro multilineage hematopoietic activity than native IL-3, while inducing no significant increase in inflammatory activity relative to native IL-3. The aim of this study was to investigate the in vivo hematopoietic response of rhesus monkeys receiving Synthokine after radiation-induced marrow aplasia. Administration schedule and dose of Synthokine were evaluated. All animals were total-body irradiated (TBI) with 700 cGy 60Co gamma radiation on day 0. Beginning on day 1, cohorts of animals (n = 5) received Synthokine subcutaneously (SC) twice daily with 25 micrograms/kg/d or 100 micrograms/kg/d for 23 days or 100 micrograms/kg/d for 14 days. Control animals (n = 9) received human serum albumin SC once daily at 15 micrograms/kg/d for 23 days. Complete blood counts were monitored for 60 days postirradiation and the durations of neutropenia (NEUT; absolute neutrophil count [ANC] textless 500/microL) and thrombocytopenia (THROM; platelet count textless 20,000/microL) were assessed. Synthokine significantly (P textless .05) reduced the duration of THROM versus the HSA-treated animals regardless of dose or protocol length. The most striking reduction was obtained in the animals receiving 100 micrograms/kg/d for 23 days (THROM = 3.5 v 12.5 days in HSA control animals). Although the duration of NEUT was not significantly altered, the depth of the nadir was significantly lessened in all animal cohorts treated with Synthokine regardless of dose versus schedule length. Bone marrow progenitor cell cultures indicated a beneficial effect of Synthokine on the recovery of granulocyte-macrophage colony-forming units that was significantly higher at day 24 post-TBI in both cohorts treated at 25 and 100 micrograms/kg/d for 23 days relative to the control animals. Plasma pharmacokinetic parameters were evaluated in both normal and irradiated animals. Pharmacokinetic analysis performed in irradiated animals after 1 week of treatment suggests an effect of repetitive Synthokine schedule and/or TBI on distribution and/or elimination of Synthokine. These data show that the Synthokine, SC55 94, administered therapeutically post-TBI, significantly enhanced platelet recovery and modulated neutrophil nadir and may be clinically useful in the treatment of the myeloablated host. View PublicationCatalog #: Product Name: 04436 MethoCult™ SF H4436 04064 Starter Kit for MethoCult™ H4034 Optimum 04100 MethoCult™ H4100 04230 MethoCult™ H4230 04236 MethoCult™ SF H4236 04431 MethoCult™ H4431 04434 MethoCult™ H4434 Classic 04464 Starter Kit for MethoCult™ H4434 Classic 04531 MethoCult™ H4531 04535 MethoCult™ H4535 Enriched Without EPO 04536 MethoCult™ SF H4536 04564 Starter Kit for MethoCult™ H4534 Classic Without EPO 04035 MethoCult™ H4035 Optimum Without EPO 04330 MethoCult™ H4330 04034 MethoCult™ H4034 Optimum 04435 MethoCult™ H4435 Enriched 04534 MethoCult™ H4534 Classic Without EPO 04437 MethoCult™ Express Catalog #: 04436 Product Name: MethoCult™ SF H4436 Catalog #: 04064 Product Name: Starter Kit for MethoCult™ H4034 Optimum Catalog #: 04100 Product Name: MethoCult™ H4100 Catalog #: 04230 Product Name: MethoCult™ H4230 Catalog #: 04236 Product Name: MethoCult™ SF H4236 Catalog #: 04431 Product Name: MethoCult™ H4431 Catalog #: 04434 Product Name: MethoCult™ H4434 Classic Catalog #: 04464 Product Name: Starter Kit for MethoCult™ H4434 Classic Catalog #: 04531 Product Name: MethoCult™ H4531 Catalog #: 04535 Product Name: MethoCult™ H4535 Enriched Without EPO Catalog #: 04536 Product Name: MethoCult™ SF H4536 Catalog #: 04564 Product Name: Starter Kit for MethoCult™ H4534 Classic Without EPO Catalog #: 04035 Product Name: MethoCult™ H4035 Optimum Without EPO Catalog #: 04330 Product Name: MethoCult™ H4330 Catalog #: 04034 Product Name: MethoCult™ H4034 Optimum Catalog #: 04435 Product Name: MethoCult™ H4435 Enriched Catalog #: 04534 Product Name: MethoCult™ H4534 Classic Without EPO Catalog #: 04437 Product Name: MethoCult™ Express - ReferenceConneally E et al. (JAN 1996) Blood 87 2 456--64
Rapid and efficient selection of human hematopoietic cells expressing murine heat-stable antigen as an indicator of retroviral-mediated gene transfer.
Recombinant retroviruses offer many advantages for the genetic modification of human hematopoietic cells, although their use in clinical protocols has thus far given disappointing results. There is therefore an important need to develop new strategies that will allow effectively transduced primitive hematopoietic target populations to be both rapidly characterized and isolated free of residual nontransduced but biologically equivalent cells. To address this need, we constructed a murine stem cell virus (MSCV)-based retroviral vector containing the 228-bp coding sequence of the murine heat-stable antigen (HSA) and generated helper virus-free amphotropic MSCV-HSA producer cells by transfection of GP-env AM12 packaging cells. Light density and, in some cases, lineage marker-negative (lin-) normal human marrow or mobilized peripheral blood cells preactivated by exposure to interleukin-3 (IL-3), IL-6, and Steel factor in vitro for 48 hours were then infected by cocultivation with these MSCV-HSA producer cells for a further 48 hours in the presence of the same cytokines. Fluorescence-activated cell sorting (FACS) analysis of the cells 24 hours later showed 21% to 41% (mean, 27%) of those that were still CD34+ to have acquired the ability to express HSA. The extent of gene transfer to erythroid and granulopoietic progenitors (burst-forming unit-erythroid and colony-forming unit-granulocyte-macrophage), as assessed by the ability of these cells to form colonies of mature progeny in the presence of normally toxic concentrations of G418, averaged 11% and 12%, respectively, in 6 experiments. These values could be increased to 100% and 77%, respectively, by prior isolation of the CD34+HSA+ cell fraction and were correspondingly decreased to an average of 2% and 5%, respectively, in the CD34+HSA- cells. In addition, the extent of gene transfer to long-term culture-initiating cells (LTC-IC) was assessed by G418 resistance. The average gene transfer to LTC-IC-derived colony-forming cells in the unsorted population was textless or = 7% in 4 experiments. FACS selection of the initially CD34+HSA+ cells increased this value to 86% and decreased it to 3% for the LTC-IC plated from the CD34+HSA- cells. Transfer of HSA gene expression to a phenotypically defined more primitive subpopulation of CD34+ cells, ie, those expressing little or no CD38, could also be shown by FACS analysis of infected populations 24 hours after infection. These findings underscore the potential use of retroviral vectors encoding HSA for the specific identification and non-toxic selection immediately after infection of retrovirally transduced populations of primitive human hematopoietic cells. In addition, such vectors should facilitate the subsequent tracking of their marked progeny using multiparameter flow cytometry. View PublicationCatalog #: Product Name: 04436 MethoCult™ SF H4436 04064 Starter Kit for MethoCult™ H4034 Optimum 04100 MethoCult™ H4100 04230 MethoCult™ H4230 04236 MethoCult™ SF H4236 04431 MethoCult™ H4431 04434 MethoCult™ H4434 Classic 04464 Starter Kit for MethoCult™ H4434 Classic 04531 MethoCult™ H4531 04535 MethoCult™ H4535 Enriched Without EPO 04536 MethoCult™ SF H4536 04564 Starter Kit for MethoCult™ H4534 Classic Without EPO 04035 MethoCult™ H4035 Optimum Without EPO 04330 MethoCult™ H4330 04034 MethoCult™ H4034 Optimum 04435 MethoCult™ H4435 Enriched 04534 MethoCult™ H4534 Classic Without EPO 04437 MethoCult™ Express Catalog #: 04436 Product Name: MethoCult™ SF H4436 Catalog #: 04064 Product Name: Starter Kit for MethoCult™ H4034 Optimum Catalog #: 04100 Product Name: MethoCult™ H4100 Catalog #: 04230 Product Name: MethoCult™ H4230 Catalog #: 04236 Product Name: MethoCult™ SF H4236 Catalog #: 04431 Product Name: MethoCult™ H4431 Catalog #: 04434 Product Name: MethoCult™ H4434 Classic Catalog #: 04464 Product Name: Starter Kit for MethoCult™ H4434 Classic Catalog #: 04531 Product Name: MethoCult™ H4531 Catalog #: 04535 Product Name: MethoCult™ H4535 Enriched Without EPO Catalog #: 04536 Product Name: MethoCult™ SF H4536 Catalog #: 04564 Product Name: Starter Kit for MethoCult™ H4534 Classic Without EPO Catalog #: 04035 Product Name: MethoCult™ H4035 Optimum Without EPO Catalog #: 04330 Product Name: MethoCult™ H4330 Catalog #: 04034 Product Name: MethoCult™ H4034 Optimum Catalog #: 04435 Product Name: MethoCult™ H4435 Enriched Catalog #: 04534 Product Name: MethoCult™ H4534 Classic Without EPO Catalog #: 04437 Product Name: MethoCult™ Express - ReferenceMayani H et al. (JUN 1993) Blood 81 12 3252--8
Cytokine-induced selective expansion and maturation of erythroid versus myeloid progenitors from purified cord blood precursor cells.
To study the role of different cytokine combinations on the proliferation and differentiation of highly purified primitive progenitor cells, a serum-free liquid culture system was used in combination with phenotypic and functional analysis of the cells produced in culture. CD34+ CD45RAlo CD71lo cells, purified from umbilical cord blood by flow cytometry and cell sorting, were selected for this study because of their high content of clonogenic cells (34%), particularly multipotent progenitors (CFU-MIX, 12% of all cells). Four cytokine combinations were tested: (1) mast cell growth factor (MGF; a c-kit ligand) and interleukin-6 (IL-6); (2) MGF, IL-6, IL-3, and erythropoietin (Epo); (3) MGF, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF)/IL-3 fusion protein (FP), macrophage colony-stimulating factor (M-CSF), and granulocyte-CSF (G-CSF); and (4) MGF, IL-6, FP, M-CSF, G-CSF, and Epo. Maximum numbers of erythroid progenitors (BFU-E, up to 55-fold increase) and mature erythroid cells were observed in the presence of MGF, IL-6, IL-3, and Epo, whereas maximum levels of myeloid progenitors (CFU-C, up to 70-fold increase) and mature myeloid cells were found in cultures supplemented with MGF, IL-6, FP, M-CSF, and G-CSF. When MGF, IL-6, FP, M-CSF, G-CSF, and Epo were present, maximum levels of both erythroid and myeloid progenitors and their progeny were observed. These results indicate that specific cytokine combinations can act directly on primitive hematopoietic cells resulting in significant expansion of progenitor cell numbers and influencing their overall patterns of proliferation and differentiation. Furthermore, the observations presented in this study suggest that the cytokine combinations used were unable to bias lineage commitment of multipotent progenitors, but rather had a permissive effect on the development of lineage-restricted clonogenic cells. View PublicationCatalog #: Product Name: 04436 MethoCult™ SF H4436 04064 Starter Kit for MethoCult™ H4034 Optimum 04100 MethoCult™ H4100 04230 MethoCult™ H4230 04236 MethoCult™ SF H4236 04431 MethoCult™ H4431 04434 MethoCult™ H4434 Classic 04464 Starter Kit for MethoCult™ H4434 Classic 04531 MethoCult™ H4531 04535 MethoCult™ H4535 Enriched Without EPO 04536 MethoCult™ SF H4536 04564 Starter Kit for MethoCult™ H4534 Classic Without EPO 04035 MethoCult™ H4035 Optimum Without EPO 04330 MethoCult™ H4330 04034 MethoCult™ H4034 Optimum 04435 MethoCult™ H4435 Enriched 04534 MethoCult™ H4534 Classic Without EPO Catalog #: 04436 Product Name: MethoCult™ SF H4436 Catalog #: 04064 Product Name: Starter Kit for MethoCult™ H4034 Optimum Catalog #: 04100 Product Name: MethoCult™ H4100 Catalog #: 04230 Product Name: MethoCult™ H4230 Catalog #: 04236 Product Name: MethoCult™ SF H4236 Catalog #: 04431 Product Name: MethoCult™ H4431 Catalog #: 04434 Product Name: MethoCult™ H4434 Classic Catalog #: 04464 Product Name: Starter Kit for MethoCult™ H4434 Classic Catalog #: 04531 Product Name: MethoCult™ H4531 Catalog #: 04535 Product Name: MethoCult™ H4535 Enriched Without EPO Catalog #: 04536 Product Name: MethoCult™ SF H4536 Catalog #: 04564 Product Name: Starter Kit for MethoCult™ H4534 Classic Without EPO Catalog #: 04035 Product Name: MethoCult™ H4035 Optimum Without EPO Catalog #: 04330 Product Name: MethoCult™ H4330 Catalog #: 04034 Product Name: MethoCult™ H4034 Optimum Catalog #: 04435 Product Name: MethoCult™ H4435 Enriched Catalog #: 04534 Product Name: MethoCult™ H4534 Classic Without EPO - ReferenceSugimura R et al. (MAY 2017) Nature 545 7655 432--438
Haematopoietic stem and progenitor cells from human pluripotent stem cells.
A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here, to yield functional human haematopoietic stem cells, we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid, B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders. View PublicationCatalog #: Product Name: 04434 MethoCult™ H4434 Classic 85850 mTeSR™1 Catalog #: 04434 Product Name: MethoCult™ H4434 Classic Catalog #: 85850 Product Name: mTeSR™1 - ReferenceGuye P et al. (JAN 2015) Nature Communications 7 1--12
Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6
Human induced pluripotent stem cells (hiPSCs) have potential for personalized and regenerative medicine. While most of the methods using these cells have focused on deriving homogenous populations of specialized cells, there has been modest success in producing hiPSC-derived organotypic tissues or organoids. Here we present a novel approach for generating and then co-differentiating hiPSC-derived progenitors. With a genetically engineered pulse of GATA-binding protein 6 (GATA6) expression, we initiate rapid emergence of all three germ layers as a complex function of GATA6 expression levels and tissue context. Within 2 weeks we obtain a complex tissue that recapitulates early developmental processes and exhibits a liver bud-like phenotype, including haematopoietic and stromal cells as well as a neuronal niche. Collectively, our approach demonstrates derivation of complex tissues from hiPSCs using a single autologous hiPSCs as source and generates a range of stromal cells that co-develop with parenchymal cells to form tissues. View PublicationCatalog #: Product Name: 04434 MethoCult™ H4434 Classic 04464 Starter Kit for MethoCult™ H4434 Classic 07923 Dispase (1 U/mL) 85850 mTeSR™1 05270 STEMdiff™ APEL™2 Medium 07920 ACCUTASE™ 36254 DMEM/F-12 with 15 mM HEPES Catalog #: 04434 Product Name: MethoCult™ H4434 Classic Catalog #: 04464 Product Name: Starter Kit for MethoCult™ H4434 Classic Catalog #: 07923 Product Name: Dispase (1 U/mL) Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 05270 Product Name: STEMdiff™ APEL™2 Medium Catalog #: 07920 Product Name: ACCUTASE™ Catalog #: 36254 Product Name: DMEM/F-12 with 15 mM HEPES - ReferenceSong B et al. (MAY 2015) Stem cells and development 24 9 1053--1065
Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system.
The generation of beta-thalassemia (β-Thal) patient-specific induced pluripotent stem cells (iPSCs), subsequent homologous recombination-based gene correction of disease-causing mutations/deletions in the β-globin gene (HBB), and their derived hematopoietic stem cell (HSC) transplantation offers an ideal therapeutic solution for treating this disease. However, the hematopoietic differentiation efficiency of gene-corrected β-Thal iPSCs has not been well evaluated in the previous studies. In this study, we used the latest gene-editing tool, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), to correct β-Thal iPSCs; gene-corrected cells exhibit normal karyotypes and full pluripotency as human embryonic stem cells (hESCs) showed no off-targeting effects. Then, we evaluated the differentiation efficiency of the gene-corrected β-Thal iPSCs. We found that during hematopoietic differentiation, gene-corrected β-Thal iPSCs showed an increased embryoid body ratio and various hematopoietic progenitor cell percentages. More importantly, the gene-corrected β-Thal iPSC lines restored HBB expression and reduced reactive oxygen species production compared with the uncorrected group. Our study suggested that hematopoietic differentiation efficiency of β-Thal iPSCs was greatly improved once corrected by the CRISPR/Cas9 system, and the information gained from our study would greatly promote the clinical application of β-Thal iPSC-derived HSCs in transplantation. View PublicationCatalog #: Product Name: 04434 MethoCult™ H4434 Classic 85850 mTeSR™1 05270 STEMdiff™ APEL™2 Medium Catalog #: 04434 Product Name: MethoCult™ H4434 Classic Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 05270 Product Name: STEMdiff™ APEL™2 Medium
Shop By
Filter Results
Filters:
- Resource Type Reference Remove This Item
- Clear All
- Area of Interest
-
- Angiogenic Cell Research 3 items
- Cancer 21 items
- Cord Blood Banking 5 items
- Drug Discovery and Toxicity Testing 11 items
- Epithelial Cell Biology 1 item
- Immunology 4 items
- Neuroscience 1 item
- Stem Cell Biology 54 items
- Transplantation Research 10 items
- Brand
-
- ALDEFLUOR 2 items
- EasySep 1 item
- MethoCult 62 items
- MyeloCult 1 item
- RoboSep 1 item
- StemSep 1 item
- StemSpan 12 items
- TeSR 8 items
- Cell Type
-
- B Cells 3 items
- Cancer Cells and Cell Lines 1 item
- Granulocytes and Subsets 1 item
- Hematopoietic Stem and Progenitor Cells 50 items
- Mammary Cells 1 item
- Mesenchymal Stem and Progenitor Cells 2 items
- Myeloid Cells 13 items
- Neural Stem and Progenitor Cells 3 items
- Pluripotent Stem Cells 10 items