Showing 49 - 60 of 115 results for "05751"
Products 1 to 12 of 25 total
- ReferenceStapelberg M et al. (FEB 2014) Free Radical Biology and Medicine 67 41--50
Indoleamine-2,3-dioxygenase elevated in tumor-initiating cells is suppressed by mitocans
Tumor-initiating cells (TICs) often survive therapy and give rise to second-line tumors. We tested the plausibility of sphere cultures as models of TICs. Microarray data and microRNA data analysis confirmed the validity of spheres as models of TICs for breast and prostate cancer as well as mesothelioma cell lines. Microarray data analysis revealed the Trp pathway as the only pathway upregulated significantly in all types of studied TICs, with increased levels of indoleamine-2,3-dioxygenase-1 (IDO1), the rate-limiting enzyme of Trp metabolism along the kynurenine pathway. All types of TICs also expressed higher levels of the Trp uptake system consisting of CD98 and LAT1 with functional consequences. IDO1 expression was regulated via both transcriptional and posttranscriptional mechanisms, depending on the cancer type. Serial transplantation of TICs in mice resulted in gradually increased IDO1. Mitocans, represented by α-tocopheryl succinate and mitochondrially targeted vitamin E succinate (MitoVES), suppressed IDO1 in TICs. MitoVES suppressed IDO1 in TICs with functional mitochondrial complex II, involving transcriptional and posttranscriptional mechanisms. IDO1 increase and its suppression by VE analogues were replicated in TICs from primary human glioblastomas. Our work indicates that IDO1 is increased in TICs and that mitocans suppress the protein. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceSiney EJ et al. (JUL 2017) Molecular neurobiology 54 5 3893--3905
Metalloproteinases ADAM10 and ADAM17 Mediate Migration and Differentiation in Glioblastoma Sphere-Forming Cells.
Glioblastoma is the most common form of primary malignant brain tumour. These tumours are highly proliferative and infiltrative resulting in a median patient survival of only 14 months from diagnosis. The current treatment regimens are ineffective against the small population of cancer stem cells residing in the tumourigenic niche; however, a new therapeutic approach could involve the removal of these cells from the microenvironment that maintains the cancer stem cell phenotype. We have isolated multipotent sphere-forming cells from human high grade glioma (glioma sphere-forming cells (GSCs)) to investigate the adhesive and migratory properties of these cells in vitro. We have focused on the role of two closely related metalloproteinases ADAM10 and ADAM17 due to their high expression in glioblastoma and GSCs and their ability to activate cytokines and growth factors. Here, we report that ADAM10 and ADAM17 inhibition selectively increases GSC, but not neural stem cell, migration and that the migrated GSCs exhibit a differentiated phenotype. We also observed a correlation between nestin, a stem/progenitor marker, and fibronectin, an extracellular matrix protein, expression in high grade glioma tissues. GSCs adherence on fibronectin is mediated by α5β1 integrin, where fibronectin further promotes GSC migration and is an effective candidate for in vivo cancer stem cell migration out of the tumourigenic niche. Our results suggest that therapies against ADAM10 and ADAM17 may promote cancer stem cell migration away from the tumourigenic niche resulting in a differentiated phenotype that is more susceptible to treatment. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceSakuma M et al. (JAN 2016) Science and technology of advanced materials 17 1 473--482
Quantitative evaluation of malignant gliomas damage induced by photoactivation of IR700 dye.
The processes involved in malignant gliomas damage were quantitatively evaluated by microscopy. The near-infrared fluorescent dye IR700 that is conjugated to an anti-CD133 antibody (IR700-CD133) specifically targets malignant gliomas (U87MG) and stem cells (BT142) and is endocytosed into the cells. The gliomas are then photodamaged by the release of reactive oxygen species (ROS) and the heat induced by illumination of IR700 by a red laser, and the motility of the vesicles within these cells is altered as a result of cellular damage. To investigate these changes in motility, we developed a new method that measures fluctuations in the intensity of phase-contrast images obtained from small areas within cells. The intensity fluctuation in U87MG cells gradually decreased as cell damage progressed, whereas the fluctuation in BT142 cells increased. The endocytosed IR700 dye was co-localized in acidic organelles such as endosomes and lysosomes. The pH in U87MG cells, as monitored by a pH indicator, was decreased and then gradually increased by the illumination of IR700, while the pH in BT142 cells increased monotonically. In these experiments, the processes of cell damage were quantitatively evaluated according to the motility of vesicles and changes in pH. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceRahman M et al. (MAR 2015) Anatomy & cell biology 48 1 25--35
Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines.
Certain limitations of the neurosphere assay (NSA) have resulted in a search for alternative culture techniques for brain tumor-initiating cells (TICs). Recently, reports have described growing glioblastoma (GBM) TICs as a monolayer using laminin. We performed a side-by-side analysis of the NSA and laminin (adherent) culture conditions to compare the growth and expansion of GBM TICs. GBM cells were grown using the NSA and adherent culture conditions. Comparisons were made using growth in culture, apoptosis assays, protein expression, limiting dilution clonal frequency assay, genetic affymetrix analysis, and tumorigenicity in vivo. In vitro expansion curves for the NSA and adherent culture conditions were virtually identical (P=0.24) and the clonogenic frequencies (5.2% for NSA vs. 5.0% for laminin, P=0.9) were similar as well. Likewise, markers of differentiation (glial fibrillary acidic protein and beta tubulin III) and proliferation (Ki67 and MCM2) revealed no statistical difference between the sphere and attachment methods. Several different methods were used to determine the numbers of dead or dying cells (trypan blue, DiIC, caspase-3, and annexin V) with none of the assays noting a meaningful variance between the two methods. In addition, genetic expression analysis with microarrays revealed no significant differences between the two groups. Finally, glioma cells derived from both methods of expansion formed large invasive tumors exhibiting GBM features when implanted in immune-compromised animals. A detailed functional, protein and genetic characterization of human GBM cells cultured in serum-free defined conditions demonstrated no statistically meaningful differences when grown using sphere (NSA) or adherent conditions. Hence, both methods are functionally equivalent and remain suitable options for expanding primary high-grade gliomas in tissue culture. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceRahman M et al. (SEP 2013) Future Oncology 9 9 1389--1396
Controlling tumor invasion: bevacizumab and BMP4 for glioblastoma
AIM Bevacizumab has been reported to result in increased tumor invasion when used to treat malignant glioma. We hypothesized that BMP4 would prevent diffuse tumor infiltration induced by bevacizumab for malignant glioma in a xenograft model. METHODS Human glioblastoma (GBM) tumor cells were implanted in the striatum of immunocompromised mice. The animals were treated with bevacizumab and BMP4. Tumor growth and invasion were measured. RESULTS The bevacizumab-treated mice had increased survival compared with control animals (p = 0.02). BMP4 alone did not result in improved survival (p = 1.0). The bevacizumab (p = 0.006) and bevacizumab plus BMP4 (p = 0.006) groups demonstrated significantly decreased total tumor size compared with control. Tumor invasion was significantly decreased in the bevacizumab (p = 0.005), BMP4 (p = 0.04) alone and bevacizumab plus BMP4 (p = 0.002) groups compared with control. No synergistic effect between bevacizumab and BMP4 was observed. CONCLUSION Bevacizumab treatment did not result in diffuse infiltration of human GBM in a mouse xenograft model. BMP4 did have an independent favorable effect on GBM that was not synergistic with bevacizumab treatment. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferencePyonteck SM et al. (OCT 2013) Nature medicine 19 10 1264--72
CSF-1R inhibition alters macrophage polarization and blocks glioma progression.
Glioblastoma multiforme (GBM) comprises several molecular subtypes, including proneural GBM. Most therapeutic approaches targeting glioma cells have failed. An alternative strategy is to target cells in the glioma microenvironment, such as tumor-associated macrophages and microglia (TAMs). Macrophages depend on colony stimulating factor-1 (CSF-1) for differentiation and survival. We used an inhibitor of the CSF-1 receptor (CSF-1R) to target TAMs in a mouse proneural GBM model, which significantly increased survival and regressed established tumors. CSF-1R blockade additionally slowed intracranial growth of patient-derived glioma xenografts. Surprisingly, TAMs were not depleted in treated mice. Instead, glioma-secreted factors, including granulocyte-macrophage CSF (GM-CSF) and interferon-γ (IFN-γ), facilitated TAM survival in the context of CSF-1R inhibition. Expression of alternatively activated M2 markers decreased in surviving TAMs, which is consistent with impaired tumor-promoting functions. These gene signatures were associated with enhanced survival in patients with proneural GBM. Our results identify TAMs as a promising therapeutic target for proneural gliomas and establish the translational potential of CSF-1R inhibition for GBM. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferencePoloni A et al. (JAN 2015) Journal of Molecular Neuroscience 55 1 91--98
Glial-Like Differentiation Potential of Human Mature Adipocytes
The potential ability to differentiate dedifferentiated adipocytes into a neural lineage is attracting strong interest as an emerging method of producing model cells for the treatment of a variety of neurological diseases. Here, we describe the efficient conversion of dedifferentiated adipocytes into a neural-like cell population. These cells grew in neurosphere-like structures and expressed a high level of the early neuroectodermal marker Nestin. These neurospheres could proliferate and express stemness genes, suggesting that these cells could be committed to the neural lineage. After neural induction, NeuroD1, Sox1, Double Cortin, and Eno2 were not expressed. Patch clamp data did not reveal different electrophysiological properties, indicating the inability of these cells to differentiate into mature neurons. In contrast, the differentiated cells expressed a high level of CLDN11, as demonstrated using molecular method, and stained positively for the glial cell markers CLDN11 and GFAP, as demonstrated using immunocytochemistry. These data were confirmed by quantitative results for glial cell line-derived neurotrophic factor production, which showed a higher secretion level in neurospheres and the differentiated cells compared with the untreated cells. In conclusion, our data demonstrate morphological, molecular, and immunocytochemical evidence of initial neural differentiation of mature adipocytes, committing to a glial lineage. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferencePambid MR et al. (JAN 2014) Pediatric Blood & Cancer 61 1 107--115
Overcoming resistance to sonic hedgehog inhibition by targeting p90 ribosomal S6 kinase in pediatric medulloblastoma
BACKGROUND Molecular subtyping has allowed for the beginning of personalized treatment in children suffering from medulloblastoma (MB). However, resistance inevitably emerges against these therapies, particularly in the Sonic Hedgehog (SHH) subtype. We found that children with SHH subtype have the worst outcome underscoring the need to identify new therapeutic targets. PROCEDURE High content screening of a 129 compound library identified agents that inhibited SHH MB growth. Lead molecular target levels, p90 ribosomal S6 kinase (RSK) were characterized by immunoblotting and qRT-PCR. Comparisons were made to human neural stem cells (hNSC). Impact of inhibiting RSK with the small molecule BI-D1870 or siRNA was assessed in growth assays (monolayer, neurosphere, and soft agar). NanoString was used to detect RSK in a cohort of 66 patients with MB. To determine BI-D1870 pharmacokinetics/pharmacodynamics, 100 mg/kg was I.P. injected into mice and tissues were collected at various time points. RESULTS Daoy, ONS76, UW228, and UW426 MB cells were exquisitely sensitive to BI-D1870 but unresponsive to SHH inhibitors. Anti-tumor growth corresponded with inactivation of RSK in MB cells. BI-D1870 had no effect on hNSCs. Inhibiting RSK with siRNA or BI-D1870 suppressed growth, induced apoptosis, and sensitized cells to SHH agents. Notably, RSK expression is correlated with SHH patients. In mice, BI-D1870 was well-tolerated and crossed the blood-brain barrier (BBB). CONCLUSIONS RSK inhibitors are promising because they target RSK which is correlated with SHH patients as well as cause high levels of apoptosis to only MB cells. Importantly, BI-D1870 crosses the BBB, acting as a scaffold for development of more long-lived RSK inhibitors. View PublicationCatalog #: Product Name: 05707 NeuroCult™ Chemical Dissociation Kit (Mouse) 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05707 Product Name: NeuroCult™ Chemical Dissociation Kit (Mouse) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceMunoz JL et al. (OCT 2013) Molecular Therapy - Nucleic Acids 2 e126
Delivery of Functional Anti-miR-9 by Mesenchymal Stem Cellderived Exosomes to Glioblastoma Multiforme Cells Conferred Chemosensitivity
Glioblastoma multiforme (GBM), the most common and lethal tumor of the adult brain, generally shows chemo- and radioresistance. MicroRNAs (miRs) regulate physiological processes, such as resistance of GBM cells to temozolomide (TMZ). Although miRs are attractive targets for cancer therapeutics, the effectiveness of this approach requires targeted delivery. Mesenchymal stem cells (MSCs) can migrate to the sites of cancers, including GBM. We report on an increase in miR-9 in TMZ-resistant GBM cells. miR-9 was involved in the expression of the drug efflux transporter, P-glycoprotein. To block miR-9, methods were developed with Cy5-tagged anti-miR-9. Dye-transfer studies indicated intracellular communication between GBM cells and MSCs. This occurred by gap junctional intercellular communication and the release of microvesicles. In both cases, anti-miR-9 was transferred from MSCs to GBM cells. However, the major form of transfer occurred with the microvesicles. The delivery of anti-miR-9 to the resistant GBM cells reversed the expression of the multidrug transporter and sensitized the GBM cells to TMZ, as shown by increased cell death and caspase activity. The data showed a potential role for MSCs in the functional delivery of synthetic anti-miR-9 to reverse the chemoresistance of GBM cells.Molecular Therapy-Nucleic Acids (2013) 2, e126; doi:10.1038/mtna.2013.60; published online 1 October 2013. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceMü et al. (NOV 2016) Molecular systems biology 12 11 889
Single-cell sequencing maps gene expression to mutational phylogenies in PDGF- and EGF-driven gliomas.
Glioblastoma multiforme (GBM) is the most common and aggressive type of primary brain tumor. Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) receptors are frequently amplified and/or possess gain-of-function mutations in GBM However, clinical trials of tyrosine-kinase inhibitors have shown disappointing efficacy, in part due to intra-tumor heterogeneity. To assess the effect of clonal heterogeneity on gene expression, we derived an approach to map single-cell expression profiles to sequentially acquired mutations identified from exome sequencing. Using 288 single cells, we constructed high-resolution phylogenies of EGF-driven and PDGF-driven GBMs, modeling transcriptional kinetics during tumor evolution. Descending the phylogenetic tree of a PDGF-driven tumor corresponded to a progressive induction of an oligodendrocyte progenitor-like cell type, expressing pro-angiogenic factors. In contrast, phylogenetic analysis of an EGFR-amplified tumor showed an up-regulation of pro-invasive genes. An in-frame deletion in a specific dimerization domain of PDGF receptor correlates with an up-regulation of growth pathways in a proneural GBM and enhances proliferation when ectopically expressed in glioma cell lines. In-frame deletions in this domain are frequent in public GBM data. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceMeco D et al. (AUG 2014) Neuro-Oncology 16 8 1067--1077
Ependymoma stem cells are highly sensitive to temozolomide in vitro and in orthotopic models
BACKGROUND Ependymoma management remains challenging because of the inherent chemoresistance of this tumor. To determine whether ependymoma stem cells (SCs) might contribute to therapy resistance, we investigated the sensitivity of ependymoma SCs to temozolomide and etoposide. METHODS The efficacies of the two DNA damaging agents were explored in two ependymoma SC lines in vitro and in vivo models. RESULTS Ependymoma SC lines were highly sensitive to temozolomide and etoposide in vitro, but only temozolomide impaired tumor-initiation properties. Consistently, temozolomide but not etoposide showed significant antitumoral activity on ependymoma SC-driven subcutaneous and orthotopic xenografts by reducing the mitotic fraction. In vitro temozolomide at the EC50 (10 µM) induced accumulation of cells in the G2/M phase that was unexpectedly accompanied by downregulation of p27 and p21 without modulation of full-length p53 (FLp53). Differentiation-committed ependymoma SCs acquired resistance to temozolomide. Inhibition of proliferation was partly due to apoptosis, that occurred earlier in differentiated cells as compared to neurospheres. The activation of apoptosis correlated with an increase in p53β/γ isoforms without modulation of FLp53 under both serum-free and differentiation-promoting media. Incubation of cells in both conditions with temozolomide resulted in increased glioneuronal differentiation exhibiting elevated glial fibrillary acidic protein, galactosylceramidase, and βIII-tubulin expression compared to untreated controls. O(6)-methylguanine DNA methyltransferase (MGMT) transcript levels were very low in SCs, and were increased by treatment and, epigenetically, by differentiation through MGMT promoter unmethylation. CONCLUSION Ependymoma growth might be impaired by temozolomide through preferential depletion of a less differentiated, more tumorigenic, MGMT-negative cell population with stem-like properties. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceMcMahill BG et al. (OCT 2015) STEM CELLS Translational Medicine 4 10 1173--1186
Feasibility Study of Canine Epidermal Neural Crest Stem Cell Transplantation in the Spinal Cords of Dogs
UNLABELLED This pilot feasibility study aimed to determine the outcome of canine epidermal neural crest stem cell (cEPI-NCSC) grafts in the normal spinal cords of healthy bred-for-research dogs. This included developing novel protocols for (a) the ex vivo expansion of cEPI-NCSCs, (b) the delivery of cEPI-NCSCs into the spinal cord, and (c) the labeling of the cells and subsequent tracing of the graft in the live animal by magnetic resonance imaging. A total of four million cEPI-NCSCs were injected into the spinal cord divided in two locations. Differences in locomotion at baseline and post-treatment were evaluated by gait analysis and compared with neurological outcome and behavioral exams. Histopathological analyses of the spinal cords and cEPI-NCSC grafts were performed at 3 weeks post-transplantation. Neurological and gait parameters were minimally affected by the stem cell injection. cEPI-NCSCs survived in the canine spinal cord for the entire period of investigation and did not migrate or proliferate. Subsets of cEPI-NCSCs expressed the neural crest stem cell marker Sox10. There was no detectable expression of markers for glial cells or neurons. The tissue reaction to the cell graft was predominantly vascular in addition to a degree of reactive astrogliosis and microglial activation. In the present study, we demonstrated that cEPI-NCSC grafts survive in the spinal cords of healthy dogs without major adverse effects. They persist locally in the normal spinal cord, may promote angiogenesis and tissue remodeling, and elicit a tissue response that may be beneficial in patients with spinal cord injury. SIGNIFICANCE It has been established that mouse and human epidermal neural crest stem cells are somatic multipotent stem cells with proved innovative potential in a mouse model of spinal cord injury (SCI) offering promise of a valid treatment for SCI. Traumatic SCI is a common neurological problem in dogs with marked similarities, clinically and pathologically, to the syndrome in people. For this reason, dogs provide a readily accessible, clinically realistic, spontaneous model for evaluation of epidermal neural crest stem cells therapeutic intervention. The results of this study are expected to give the baseline data for a future clinical trial in dogs with traumatic SCI. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human)
Products 1 to 12 of 25 total
Shop By
Filter Results
- Resource Type
- Product Information Sheet 1 item
- Reference 112 items
- Safety Data Sheet 1 item
- Technical Manual 1 item
- Product Type
- Cell Culture Media and Supplements 1 item
- Area of Interest
- Angiogenic Cell Research 1 item
- Cancer 20 items
- Drug Discovery and Toxicity Testing 1 item
- Neuroscience 99 items
- Stem Cell Biology 2 items
- Brand
- ALDEFLUOR 1 item
- IntestiCult 1 item
- NeuroCult 110 items
- TeSR 1 item
- Cell Type
- Brain Tumor Stem Cells 65 items
- Cancer Cells and Cell Lines 14 items
- Neural Stem and Progenitor Cells 82 items
- Pluripotent Stem Cells 1 item