Showing 37 - 48 of 74 results for "07923"
3 Products
- ReferenceDurruthy-Durruthy J et al. (APR 2014) PLoS ONE 9 4 e94231
Rapid and efficient conversion of integration-free human induced pluripotent stem cells to GMP-grade culture conditions
Data suggest that clinical applications of human induced pluripotent stem cells (hiPSCs) will be realized. Nonetheless, clinical applications will require hiPSCs that are free of exogenous DNA and that can be manufactured through Good Manufacturing Practice (GMP). Optimally, derivation of hiPSCs should be rapid and efficient in order to minimize manipulations, reduce potential for accumulation of mutations and minimize financial costs. Previous studies reported the use of modified synthetic mRNAs to reprogram fibroblasts to a pluripotent state. Here, we provide an optimized, fully chemically defined and feeder-free protocol for the derivation of hiPSCs using synthetic mRNAs. The protocol results in derivation of fully reprogrammed hiPSC lines from adult dermal fibroblasts in less than two weeks. The hiPSC lines were successfully tested for their identity, purity, stability and safety at a GMP facility and cryopreserved. To our knowledge, as a proof of principle, these are the first integration-free iPSCs lines that were reproducibly generated through synthetic mRNA reprogramming that could be putatively used for clinical purposes. View PublicationCatalog #: Product Name: 05860 TeSR™2 (Replaced) 85850 mTeSR™1 07923 Dispase (1 U/mL) 07909 Collagenase Type IV (1 mg/mL) Catalog #: 05860 Product Name: TeSR™2 (Replaced) Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 07923 Product Name: Dispase (1 U/mL) Catalog #: 07909 Product Name: Collagenase Type IV (1 mg/mL) - ReferenceKim T-GG et al. (JUL 2014) Stem Cells 32 7 1789--1804
Efficient specification of interneurons from human pluripotent stem cells by dorsoventral and rostrocaudal modulation
GABAergic interneurons regulate cortical neural networks by providing inhibitory inputs, and their malfunction, resulting in failure to intricately regulate neural circuit balance, is implicated in brain diseases such as Schizophrenia, Autism, and Epilepsy. During early development, GABAergic interneuron progenitors arise from the ventral telencephalic area such as medial ganglionic eminence (MGE) and caudal ganglionic eminence (CGE) by the actions of secreted signaling molecules from nearby organizers, and migrate to their target sites where they form local synaptic connections. In this study, using combinatorial and temporal modulation of developmentally relevant dorsoventral and rostrocaudal signaling pathways (SHH, Wnt, and FGF8), we efficiently generated MGE cells from multiple human pluripotent stem cells. Most importantly, modulation of FGF8/FGF19 signaling efficiently directed MGE versus CGE differentiation. Human MGE cells spontaneously differentiated into Lhx6-expressing GABAergic interneurons and showed migratory properties. These human MGE-derived neurons generated GABA, fired action potentials, and displayed robust GABAergic postsynaptic activity. Transplantation into rodent brains results in well-contained neural grafts enriched with GABAergic interneurons that migrate in the host and mature to express somatostatin or parvalbumin. Thus, we propose that signaling modulation recapitulating normal developmental patterns efficiently generate human GABAergic interneurons. This strategy represents a novel tool in regenerative medicine, developmental studies, disease modeling, bioassay, and drug screening. View PublicationCatalog #: Product Name: 85850 mTeSR™1 07923 Dispase (1 U/mL) Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 07923 Product Name: Dispase (1 U/mL) - ReferenceDiederichs S and Tuan RS (JUL 2014) Stem cells and development 23 14 1--53
Functional comparison of human-induced pluripotent stem cell-derived mesenchymal cells and bone marrow-derived mesenchymal stromal cells from the same donor.
Mesenchymal stem cells (MSCs) have a high potential for therapeutic efficacy in treating diverse musculoskeletal injuries and cardiovascular diseases, and for ameliorating the severity of graft-versus-host and autoimmune diseases. While most of these clinical applications require substantial cell quantities, the number of MSCs that can be obtained initially from a single donor is limited. Reports on the derivation of MSC-like cells from pluripotent stem cells (PSCs) are, thus, of interest, as the infinite proliferative capacity of PSCs opens the possibility to generate large amounts of uniform batches of MSCs. However, characterization of such MSC-like cells is currently inadequate, especially with regard to the question of whether these cells are equivalent or identical to MSCs. In this study, we have derived MSC-like cells [induced PSC-derived MSC-like progenitor cells (iMPCs)] using four different methodologies from a newly established induced PSC line reprogrammed from human bone marrow stromal cells (BMSCs), and compared the iMPCs directly with the originating parental BMSCs. The iMPCs exhibited typical MSC/fibroblastic morphology and MSC-typical surface marker profile, and they were capable of differentiation in vitro along the osteogenic, chondrogenic, and adipogenic lineages. However, compared with the parental BMSCs, iMPCs displayed a unique expression pattern of mesenchymal and pluripotency genes and were less responsive to traditional BMSC differentiation protocols. We, therefore, conclude that iMPCs generated from PSCs via spontaneous differentiation represent a distinct population of cells which exhibit MSC-like characteristics. View PublicationCatalog #: Product Name: 85850 mTeSR™1 07923 Dispase (1 U/mL) 07903 0.1% Gelatin in Water Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 07923 Product Name: Dispase (1 U/mL) Catalog #: 07903 Product Name: 0.1% Gelatin in Water - ReferenceAlisson-Silva F et al. (MAY 2014) Glycobiology 24 5 458--468
Evidences for the involvement of cell surface glycans in stem cell pluripotency and differentiation
Induced pluripotent stem (iPS) cells are somatic cells that have been reprogrammed to a pluripotent state via the introduction of defined transcription factors. Although iPS is a potentially valuable resource for regenerative medicine and drug development, several issues regarding their pluripotency, differentiation propensity and potential for tumorigenesis remain to be elucidated. Analysis of cell surface glycans has arisen as an interesting tool for the characterization of iPS. An appropriate characterization of glycan surface molecules of human embryonic stem (hES) cells and iPS cells might generate crucial data to highlight their role in the acquisition and maintenance of pluripotency. In this study, we characterized the surface glycans of iPS generated from menstrual blood-derived mesenchymal cells (iPS-MBMC). We demonstrated that, upon spontaneous differentiation, iPS-MBMC present high amounts of terminal $\$-galactopyranoside residues, pointing to an important role of terminal-linked sialic acids in pluripotency maintenance. The removal of sialic acids by neuraminidase induces iPS-MBMC and hES cells differentiation, prompting an ectoderm commitment. Exposed $\$-galactopyranose residues might be recognized by carbohydrate-binding molecules found on the cell surface, which could modulate intercellular or intracellular interactions. Together, our results point for the first time to the involvement of the presence of terminal sialic acid in the maintenance of embryonic stem cell pluripotency and, therefore, the modulation of sialic acid biosynthesis emerges as a mechanism that may govern stem cell differentiation. View PublicationCatalog #: Product Name: 60093 Anti-Human OCT4 (OCT3) Antibody, Clone 3A2A20 85850 mTeSR™1 07923 Dispase (1 U/mL) Catalog #: 60093 Product Name: Anti-Human OCT4 (OCT3) Antibody, Clone 3A2A20 Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 07923 Product Name: Dispase (1 U/mL) - ReferenceJung L et al. (JUN 2014) Molecular Human Reproduction 20 6 538--549
ONSL and OSKM cocktails act synergistically in reprogramming human somatic cells into induced pluripotent stem cells
The advent of human induced pluripotent stem cells (hiPSC) is revolutionizing many research fields including cell-replacement therapy, drug screening, physiopathology of specific diseases and more basic research such as embryonic development or diseases modeling. Despite the large number of reports on reprogramming methods, techniques in use remain globally inefficient. We present here a new optimized approach to improve this efficiency. After having tested different monocistronic vectors with poor results, we adopted a polycistronic cassette encoding Thomson's cocktail OCT4, NANOG, SOX2 and LIN28 (ONSL) separated by 2A peptides. This cassette was tested in various vector backbones, based on lentivirus or retrovirus under a LTR or EF1 alpha promoter. This allowed us to show that ONSL-carrier retrovectors reprogrammed adult fibroblast cells with a much higher efficiency (up to 0.6%) than any other tested. We then compared the reprogramming efficiencies of two different polycistronic genes, ONSL and OCT4, SOX2, KLF4 and cMYC (OSKM) placed in the same retrovector backbone. Interestingly, in this context ONSL gene reprograms more efficiently than OSKM but OSKM reprograms faster suggesting that the two cocktails may reprogram through distinct pathways. By equally mixing RV-LTR-ONSL and RV-LTR-OSKM, we indeed observed a remarkable synergy, yielding a reprogramming efficiency of textgreater2%. We present here a drastic improvement of the reprogramming efficiency, which opens doors to the development of automated and high throughput strategies of hiPSC production. Furthermore, non-integrative reprogramming protocols (i.e. mRNA) may take advantage of this synergy to boost their efficiency. View PublicationCatalog #: Product Name: 85850 mTeSR™1 07923 Dispase (1 U/mL) 05893 AggreWell™ EB Formation Medium Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 07923 Product Name: Dispase (1 U/mL) Catalog #: 05893 Product Name: AggreWell™ EB Formation Medium - ReferenceLu HF et al. (MAR 2014) Biomaterials 35 9 2816--2826
A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells
A defined xeno-free system for patient-specific iPSC derivation and differentiation is required for translation to clinical applications. However, standard somatic cell reprogramming protocols rely on using MEFs and xenogeneic medium, imposing a significant obstacle to clinical translation. Here, we describe a well-defined culture system based on xeno-free media and LN521 substrate which supported i) efficient reprogramming of normal or diseased skin fibroblasts from human of different ages into hiPSCs with a 15-30 fold increase in efficiency over conventional viral vector-based method; ii) long-term self-renewal of hiPSCs; and iii) direct hiPSC lineage-specific differentiation. Using an excisable polycistronic vector and optimized culture conditions, we achieved up to 0.15%-0.3% reprogramming efficiencies. Subsequently, transgene-free hiPSCs were obtained by Cre-mediated excision of the reprogramming factors. The derived iPSCs maintained long-term self-renewal, normal karyotype and pluripotency, as demonstrated by the expression of stem cell markers and ability to form derivatives of three germ layers both in vitro and in vivo. Importantly, we demonstrated that Parkinson's patient transgene-free iPSCs derived using the same system could be directed towards differentiation into dopaminergic neurons under xeno-free culture conditions. Our approach provides a safe and robust platform for the generation of patient-specific iPSCs and derivatives for clinical and translational applications. textcopyright 2013 Elsevier Ltd. View PublicationCatalog #: Product Name: 05860 TeSR™2 (Replaced) 85850 mTeSR™1 77003 CellAdhere™ Laminin-521 07920 ACCUTASE™ 07923 Dispase (1 U/mL) Catalog #: 05860 Product Name: TeSR™2 (Replaced) Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 77003 Product Name: CellAdhere™ Laminin-521 Catalog #: 07920 Product Name: ACCUTASE™ Catalog #: 07923 Product Name: Dispase (1 U/mL) - ReferenceMarchand M et al. (JAN 2014) Stem cells translational medicine 3 1 91--97
Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor.
Smooth muscle cells (SMCs) and endothelial cells (ECs) are typically derived separately, with low efficiencies, from human pluripotent stem cells (hPSCs). The concurrent generation of these cell types might lead to potential applications in regenerative medicine to model, elucidate, and eventually treat vascular diseases. Here we report a robust two-step protocol that can be used to simultaneously generate large numbers of functional SMCs and ECs from a common proliferative vascular progenitor population via a two-dimensional culture system. We show here that coculturing hPSCs with OP9 cells in media supplemented with vascular endothelial growth factor, basic fibroblast growth factor, and bone morphogenetic protein 4 yields a higher percentage of CD31(+)CD34(+) cells on day 8 of differentiation. Upon exposure to endothelial differentiation media and SM differentiation media, these vascular progenitors were able to differentiate and mature into functional endothelial cells and smooth muscle cells, respectively. Furthermore, we were able to expand the intermediate population more than a billion fold to generate sufficient numbers of ECs and SMCs in parallel for potential therapeutic transplantations. View PublicationCatalog #: Product Name: 85850 mTeSR™1 07923 Dispase (1 U/mL) Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 07923 Product Name: Dispase (1 U/mL) - ReferenceGoh PA et al. (NOV 2013) PLoS ONE 8 11 e81622
A systematic evaluation of integration free reprogramming methods for deriving clinically relevant patient specific induced pluripotent stem (iPS) cells
A systematic evaluation of three different methods for generating induced pluripotent stem (iPS) cells was performed using the same set of parental cells in our quest to develop a feeder independent and xeno-free method for somatic cell reprogramming that could be transferred into a GMP environment. When using the BJ fibroblast cell line, the highest reprogramming efficiency (1.89% of starting cells) was observed with the mRNA based method which was almost 20 fold higher than that observed with the retrovirus (0.2%) and episomal plasmid (0.10%) methods. Standard characterisation tests did not reveal any differences in an array of pluripotency markers between the iPS lines derived using the various methods. However, when the same methods were used to reprogram three different primary fibroblasts lines, two derived from patients with rapid onset parkinsonism dystonia and one from an elderly healthy volunteer, we consistently observed higher reprogramming efficiencies with the episomal plasmid method, which was 4 fold higher when compared to the retroviral method and over 50 fold higher than the mRNA method. Additionally, with the plasmid reprogramming protocol, recombinant vitronectin and synthemax® could be used together with commercially available, fully defined, xeno-free essential 8 medium without significantly impacting the reprogramming efficiency. To demonstrate the robustness of this protocol, we reprogrammed a further 2 primary patient cell lines, one with retinosa pigmentosa and the other with Parkinsons disease. We believe that we have optimised a simple and reproducible method which could be used as a starting point for developing GMP protocols, a prerequisite for generating clinically relevant patient specific iPS cells. View PublicationCatalog #: Product Name: 85850 mTeSR™1 07923 Dispase (1 U/mL) 07174 Gentle Cell Dissociation Reagent Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 07923 Product Name: Dispase (1 U/mL) Catalog #: 07174 Product Name: Gentle Cell Dissociation Reagent - ReferenceNguyen HT et al. (FEB 2014) Molecular Human Reproduction 20 2 168--177
Gain of 20q11.21 in human embryonic stem cells improves cell survival by increased expression of Bcl-xL
Gain of 20q11.21 is a chromosomal abnormality that is recurrently found in human pluripotent stem cells and cancers, strongly suggesting that this mutation confers a proliferative or survival advantage to these cells. In this work we studied three human embryonic stem cell (hESC) lines that acquired a gain of 20q11.21 during in vitro culture. The study of the mRNA gene expression levels of the loci located in the common region of duplication showed that HM13, ID1, BCL2L1, KIF3B and the immature form of the micro-RNA miR-1825 were up-regulated in mutant cells. ID1 and BCL2L1 were further studied as potential drivers of the phenotype of hESC with a 20q11.21 gain. We found no increase in the protein levels of ID1, nor the downstream effects expected from over-expression of this gene. On the other hand, hESC with a gain of 20q11.21 had on average a 3-fold increase of Bcl-xL (the anti-apoptotic isoform of BCL2L1) protein levels. The mutant hESC underwent 2- to 3-fold less apoptosis upon loss of cell-to-cell contact and were ∼2-fold more efficient in forming colonies from a single cell. The key role of BCL2L1 in this mutation was further confirmed by transgenic over-expression of BCL2L1 in the wild-type cells, leading to apoptosis-resistant cells, and BCL2L1-knock-down in the mutant hESC, resulting in a restoration of the wild-type phenotype. This resistance to apoptosis supposes a significant advantage for the mutant cells, explaining the high frequency of gains of 20q11.21 in human pluripotent stem cells. View PublicationCatalog #: Product Name: 85850 mTeSR™1 07923 Dispase (1 U/mL) Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 07923 Product Name: Dispase (1 U/mL) - ReferenceLou Y-R et al. (FEB 2014) Stem Cells and Development 23 4 380--392
The Use of Nanofibrillar Cellulose Hydrogel As a Flexible Three-Dimensional Model to Culture Human Pluripotent Stem Cells
Human embryonic stem cells and induced pluripotent stem cells have great potential in research and thera-pies. The current in vitro culture systems for human pluripotent stem cells (hPSCs) do not mimic the three-dimensional (3D) in vivo stem cell niche that transiently supports stem cell proliferation and is subject to changes which facilitate subsequent differentiation during development. Here, we demonstrate, for the first time, that a novel plant-derived nanofibrillar cellulose (NFC) hydrogel creates a flexible 3D environment for hPSC culture. The pluripotency of hPSCs cultured in the NFC hydrogel was maintained for 26 days as evidenced by the expression of OCT4, NANOG, and SSEA-4, in vitro embryoid body formation and in vivo teratoma formation. The use of a cellulose enzyme, cellulase, enables easy cell propagation in 3D culture as well as a shift between 3D and two-dimensional cultures. More importantly, the removal of the NFC hydrogel facilitates differentiation while retaining 3D cell organization. Thus, the NFC hydrogel represents a flexible, xeno-free 3D culture system that supports pluripotency and will be useful in hPSC-based drug research and regenerative medicine. View PublicationCatalog #: Product Name: 85850 mTeSR™1 07923 Dispase (1 U/mL) Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 07923 Product Name: Dispase (1 U/mL) - ReferenceKameoka S et al. (JAN 2014) Toxicological Sciences 137 1 76--90
A High-Throughput Screen for Teratogens Using Human Pluripotent Stem Cells
There is need in the pharmaceutical and chemical industries for high-throughput human cell-based assays for identifying hazardous chemicals, thereby reducing the overall reliance on animal studies for predicting the risk of toxic responses in humans. Despite instances of human-specific teratogens such as thalidomide, the use of human cell-teratogenicity assays has just started to be explored. Herein, a human pluripotent stem cell test (hPST) for identifying teratogens is described, benchmarking the in vitro findings to traditional preclinical toxicology teratogenicity studies and when available to teratogenic outcomes in humans. The hPST method employs a 3-day monolayer directed differentiation of human embryonic stem cells. The teratogenic risk of a compound is gauged by measuring the reduction in nuclear translocation of the transcription factor SOX17 in mesendodermal cells. Decreased nuclear SOX17 in the hPST model was strongly correlated with in vivo teratogenicity. Specifically, 71 drug-like compounds with known in vivo effects, including thalidomide, were examined in the hPST. A threshold of 5μM demonstrated 94% accuracy (97% sensitivity and 92% specificity). Furthermore, 15 environmental toxicants with physicochemical properties distinct from small molecule pharmaceutical agents were examined and a similarly strong concordance with teratogenicity outcomes from in vivo studies was observed. Finally, to assess the suitability of the hPST for high-throughput screens, a small library of 300 kinase inhibitors was tested, demonstrating the hPST platform's utility for interrogating teratogenic mechanisms and drug safety prediction. Thus, the hPST assay is a robust predictor of teratogenicity and appears to be an improvement over existing in vitro models. View PublicationCatalog #: Product Name: 85850 mTeSR™1 07920 ACCUTASE™ 07923 Dispase (1 U/mL) Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 07920 Product Name: ACCUTASE™ Catalog #: 07923 Product Name: Dispase (1 U/mL) - ReferenceElabd C et al. (OCT 2013) The Journal of Cell Biology 203 1 73--85
DNA methyltransferase-3–dependent nonrandom template segregation in differentiating embryonic stem cells
Asymmetry of cell fate is one fundamental property of stem cells, in which one daughter cell self-renews, whereas the other differentiates. Evidence of nonrandom template segregation (NRTS) of chromosomes during asymmetric cell divisions in phylogenetically divergent organisms, such as plants, fungi, and mammals, has already been shown. However, before this current work, asymmetric inheritance of chromatids has never been demonstrated in differentiating embryonic stem cells (ESCs), and its molecular mechanism has remained unknown. Our results unambiguously demonstrate NRTS in asymmetrically dividing, differentiating human and mouse ESCs. Moreover, we show that NRTS is dependent on DNA methylation and on Dnmt3 (DNA methyltransferase-3), indicating a molecular mechanism that regulates this phenomenon. Furthermore, our data support the hypothesis that retention of chromatids with the old" template DNA preserves the epigenetic memory of cell fate� View PublicationCatalog #: Product Name: 85850 mTeSR™1 36254 DMEM/F-12 with 15 mM HEPES 07923 Dispase (1 U/mL) Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 36254 Product Name: DMEM/F-12 with 15 mM HEPES Catalog #: 07923 Product Name: Dispase (1 U/mL)
3 Products
Shop By
Filter Results
- Resource Type
-
- Product Information Sheet 1 item
- Reference 72 items
- Safety Data Sheet 1 item
- Area of Interest
-
- Cell Line Development 9 items
- Drug Discovery and Toxicity Testing 1 item
- Neuroscience 8 items
- Stem Cell Biology 71 items
- Brand
-
- AggreWell 7 items
- CryoStor 1 item
- ES-Cult 1 item
- EasySep 2 items
- MethoCult 5 items
- NeuroCult 1 item
- STEMdiff 1 item
- TeSR 71 items
- Cell Type
-
- Epithelial Cells 1 item
- Hematopoietic Stem and Progenitor Cells 2 items
- Mesenchymal Stem and Progenitor Cells 2 items
- Monocytes 1 item
- Neural Stem and Progenitor Cells 6 items
- Neurons 2 items
- Pluripotent Stem Cells 71 items