Showing 37 - 48 of 95 results for "06005"
Products 37 to 48 of 91 total
- ReferenceS. Kimura et al. (apr 2019) The Journal of experimental medicine 216 4 831--846
Sox8 is essential for M cell maturation to accelerate IgA response at the early stage after weaning in mice.
Microfold (M) cells residing in the follicle-associated epithelium (FAE) of the gut-associated lymphoid tissue are specialized for antigen uptake to initiate mucosal immune responses. The molecular machinery and biological significance of M cell differentiation, however, remain to be fully elucidated. Here, we demonstrate that Sox8, a member of the SRY-related HMG box transcription factor family, is specifically expressed by M cells in the intestinal epithelium. The expression of Sox8 requires activation of RANKL-RelB signaling. Chromatin immunoprecipitation and luciferase assays revealed that Sox8 directly binds the promoter region of Gp2 to increase Gp2 expression, which is the hallmark of functionally mature M cells. Furthermore, genetic deletion of Sox8 causes a marked decrease in the number of mature M cells, resulting in reduced antigen uptake in Peyer's patches. Consequently, juvenile Sox8-deficient mice showed attenuated germinal center reactions and antigen-specific IgA responses. These findings indicate that Sox8 plays an essential role in the development of M cells to establish mucosal immune responses. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse) - ReferenceY.-C. Kim et al. ( 2019) Gastroenterology 156 4 1052--1065
Small Heterodimer Partner and Fibroblast Growth Factor 19 Inhibit Expression of NPC1L1 in Mouse Intestine and Cholesterol Absorption.
BACKGROUND {\&} AIMS The nuclear receptor subfamily 0 group B member 2 (NR0B2, also called SHP) is expressed at high levels in the liver and intestine. Postprandial fibroblast growth factor 19 (human FGF19, mouse FGF15) signaling increases the transcriptional activity of SHP. We studied the functions of SHP and FGF19 in the intestines of mice, including their regulation of expression of the cholesterol transporter NPC1L1 )NPC1-like intracellular cholesterol transporter 1) and cholesterol absorption. METHODS We performed histologic and biochemical analyses of intestinal tissues from C57BL/6 and SHP-knockout mice and performed RNA-sequencing analyses to identify genes regulated by SHP. The effects of fasting and refeeding on intestinal expression of NPC1L1 were examined in C57BL/6, SHP-knockout, and FGF15-knockout mice. Mice were given FGF19 daily for 1 week; fractional cholesterol absorption, cholesterol and bile acid (BA) levels, and composition of BAs were measured. Intestinal organoids were generated from C57BL/6 and SHP-knockout mice, and cholesterol uptake was measured. Luciferase reporter assays were performed with HT29 cells. RESULTS We found that the genes that regulate lipid and ion transport in intestine, including NPC1L1, were up-regulated and that cholesterol absorption was increased in SHP-knockout mice compared with C57BL/6 mice. Expression of NPC1L1 was reduced in C57BL/6 mice after refeeding after fasting but not in SHP-knockout or FGF15-knockout mice. SHP-knockout mice had altered BA composition compared with C57BL/6 mice. FGF19 injection reduced expression of NPC1L1, decreased cholesterol absorption, and increased levels of hydrophilic BAs, including tauro-$\alpha$- and -$\beta$-muricholic acids; these changes were not observed in SHP-knockout mice. SREBF2 (sterol regulatory element binding transcription factor 2), which regulates cholesterol, activated transcription of NPC1L1. FGF19 signaling led to phosphorylation of SHP, which inhibited SREBF2 activity. CONCLUSIONS Postprandial FGF19 and SHP inhibit SREBF2, which leads to repression of intestinal NPC1L1 expression and cholesterol absorption. Strategies to increase FGF19 signaling to activate SHP might be developed for treatment of hypercholesterolemia. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse) - ReferenceB. Khiatah et al. (nov 2019) Stem cell research {\&} therapy 10 1 322
Intra-pancreatic tissue-derived mesenchymal stromal cells: a promising therapeutic potential with anti-inflammatory and pro-angiogenic profiles.
BACKGROUND Human pancreata contain many types of cells, such as endocrine islets, acinar, ductal, fat, and mesenchymal stromal cells (MSCs). MSCs are important and shown to have a promising therapeutic potential to treat various disease conditions. METHODS We investigated intra-pancreatic tissue-derived (IPTD) MSCs isolated from tissue fractions that are routinely discarded during pancreatic islet isolation of human cadaveric donors. Furthermore, whether pro-angiogenic and anti-inflammatory properties of these cells could be enhanced was investigated. RESULTS IPTD-MSCs were expanded in GMP-compatible CMRL-1066 medium supplemented with 5{\%} human platelet lysate (hPL). IPTD-MSCs were found to be highly pure, with {\textgreater} 95{\%} positive for CD90, CD105, and CD73, and negative for CD45, CD34, CD14, and HLA-DR. Immunofluorescence staining of pancreas tissue demonstrated the presence of CD105+ cells in the vicinity of islets. IPTD-MSCs were capable of differentiation into adipocytes, chondrocytes, and osteoblasts in vitro, underscoring their multipotent features. When these cells were cultured in the presence of a low dose of TNF-$\alpha$, gene expression of tumor necrosis factor alpha-stimulated gene-6 (TSG-6) was significantly increased, compared to control. In contrast, treating cells with dimethyloxallyl glycine (DMOG) (a prolyl 4-hydroxylase inhibitor) enhanced mRNA levels of nuclear factor erythroid 2-related factor 2 (NRF2) and vascular endothelial growth factor (VEGF). Interestingly, a combination of TNF-$\alpha$ and DMOG stimulated the optimal expression of all three genes in IPTD-MSCs. Conditioned medium of IPTD-MSCs treated with a combination of DMOG and TNF-$\alpha$ contained higher levels of pro-angiogenic (VEGF, IL-6, and IL-8) compared to controls, promoting angiogenesis of human endothelial cells in vitro. In contrast, levels of MCP-1, a pro-inflammatory cytokine, were reduced in the conditioned medium of IPTD-MSCs treated with a combination of DMOG and TNF-$\alpha$. CONCLUSIONS The results demonstrate that IPTD-MSCs reside within the pancreas and can be separated as part of a standard islet-isolation protocol. These IPTD-MSCs can be expanded and potentiated ex vivo to enhance their anti-inflammatory and pro-angiogenic profiles. The fact that IPTD-MSCs are generated in a GMP-compatible procedure implicates a direct clinical application. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse) - ReferenceY. Jin et al. ( 2018) American journal of physiology. Gastrointestinal and liver physiology 315 6 G966--G979
Knockout of ClC-2 reveals critical functions of adherens junctions in colonic homeostasis and tumorigenicity.
Adherens junctions (AJs), together with tight junctions (TJs), form an apical junctional complex that regulates intestinal epithelial cell-to-cell adherence and barrier homeostasis. Within the AJ, membrane-bound E-cadherin binds $\beta$-catenin, which functions as an essential intracellular signaling molecule. We have previously identified a novel protein in the region of the apical junction complex, chloride channel protein-2 (ClC-2), that we have used to study TJ regulation. In this study, we investigated the possible effects of ClC-2 on the regulation of AJs in intestinal mucosal epithelial homeostasis and tumorigenicity. Mucosal homeostasis and junctional proteins were examined in wild-type (WT) and ClC-2 knockout (KO) mice as well as associated colonoids. Tumorigenicity and AJ-associated signaling were evaluated in a murine colitis-associated tumor model and in a colorectal cancer cell line (HT-29). Colonic tissues from ClC-2 KO mice had altered ultrastructural morphology of intercellular junctions with reduced colonocyte differentiation, whereas jejunal tissues had minimal changes. Colonic crypts from ClC-2 KO mice had significantly higher numbers of less-differentiated forms of colonoids compared with WT. Furthermore, the absence of ClC-2 resulted in redistribution of AJ proteins and increased $\beta$-catenin activity. Downregulation of ClC-2 in colorectal cells resulted in significant increases in proliferation associated with disruption of AJs. Colitis-associated tumors in ClC-2 KO mice were significantly increased, associated with $\beta$-catenin transcription factor activation. The absence of ClC-2 results in less differentiated colonic crypts and increased tumorigenicity associated with colitis via dysregulation of AJ proteins and activation of $\beta$-catenin-associated signaling. NEW {\&} NOTEWORTHY Disruption of adherens junctions in the absence of chloride channel protein-2 revealed critical functions of these junctional structures, including maintenance of colonic homeostasis and differentiation as well as driving tumorigenicity by regulating $\beta$-catenin signaling. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse) - ReferenceX. Jin et al. (may 2020) Leukemia 34 5 1305--1314
CRL3-SPOP ubiquitin ligase complex suppresses the growth of diffuse large B-cell lymphoma by negatively regulating the MyD88/NF-$\kappa$B signaling.
Recurrent oncogenic mutations of MyD88 have been identified in a variety of lymphoid malignancies. Gain-of-function mutations of MyD88 constitutively activate downstream NF-$\kappa$B signaling pathways, resulting in increased cellular proliferation and survival. However, whether MyD88 activity can be aberrantly regulated in MyD88-wild-type lymphoid malignancies remains poorly understood. SPOP is an adaptor protein of CUL3-based E3 ubiquitin ligase complex and frequently mutated genes in prostate and endometrial cancers. In this study, we reveal that SPOP binds to and induces the nondegradative ubiquitination of MyD88 by recognizing an atypical SPOP-binding motif in MyD88. This modification blocks Myddosome assembly and downstream NF-$\kappa$B activation. SPOP is mutated in a subset of lymphoid malignancies, including diffuse large B-cell lymphoma (DLBCL). Lymphoid malignancies-associated SPOP mutants exhibited impaired binding to MyD88 and suppression of NF-$\kappa$B activation. The DLBCL-associated, SPOP-binding defective mutants of MyD88 escaped from SPOP-mediated ubiquitination, and their effect on NF-$\kappa$B activation is stronger than that of wild-type MyD88. Moreover, SPOP suppresses DLBCL cell growth in vitro and tumor xenograft in vivo by inhibiting the MyD88/NF-$\kappa$B signaling. Therefore, SPOP acts as a tumor suppressor in DLBCL. Mutations in the SPOP-MyD88 binding interface may disrupt the SPOP-MyD88 regulatory axis and promote aberrant MyD88/NF-$\kappa$B activation and cell growth in DLCBL. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) 19254 EasySep™ Human Naïve B Cell Enrichment Kit Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 19254 Product Name: EasySep™ Human Naïve B Cell Enrichment Kit - ReferenceH. Ise et al. ( 2019) Stem cells international 2019 4341286
Improved Isolation of Mesenchymal Stem Cells Based on Interactions between N-Acetylglucosamine-Bearing Polymers and Cell-Surface Vimentin.
Mesenchymal stem cells (MSCs) in bone marrow and adipose tissues are expected to be effective tools for regenerative medicine to treat various diseases. To obtain MSCs that possess both high differentiation and tissue regenerative potential, it is necessary to establish an isolation system that does not require long-term culture. It has previously been reported that the cytoskeletal protein vimentin, expressed on the surfaces of multiple cell types, possesses N-acetylglucosamine- (GlcNAc-) binding activity. Therefore, we tried to exploit this interaction to efficiently isolate MSCs from rat bone marrow cells using GlcNAc-bearing polymer-coated dishes. Cells isolated by this method were identified as MSCs because they were CD34-, CD45-, and CD11b/c-negative and CD90-, CD29-, CD44-, CD54-, CD73-, and CD105-positive. Osteoblast, adipocyte, and chondrocyte differentiation was observed in these cells. In total, yields of rat MSCs were threefold to fourfold higher using GlcNAc-bearing polymer-coated dishes than yields using conventional tissue-culture dishes. Interestingly, MSCs isolated with GlcNAc-bearing polymer-coated dishes strongly expressed CD106, whereas those isolated with conventional tissue-culture dishes had low CD106 expression. Moreover, senescence-associated $\beta$-galactosidase activity in MSCs from GlcNAc-bearing polymer-coated dishes was lower than that in MSCs from tissue-culture dishes. These results establish an improved isolation method for high-quality MSCs. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse) - ReferenceG. Huelsz-Prince et al. ( 2019) Biomolecules 9 3
Effect of Antifreeze Glycoproteins on Organoid Survival during and after Hypothermic Storage.
We study the effect of antifreeze glycoproteins (AFGPs) on the survival of organoids under hypothermic conditions. We find that the survival of organoids in cold conditions depends on their developmental stage. Mature organoids die within 24 h when being stored at 4 °C, while cystic organoids can survive up to 48 h. We find that in the presence of AFGPs, the organoid survival is prolonged up to 72 h, irrespective of their developmental stage. Fluorescence microscopy experiments reveal that the AFGPs predominately localize at the cell surface and cover the cell membranes. Our findings support a mechanism in which the positive effect of AFGPs on cell survival during hypothermic storage involves the direct interaction of AFGPs with the cell membrane. Our research highlights organoids as an attractive multicellular model system for studying the action of AFGPs that bridges the gap between single-cell and whole-organ studies. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse) - ReferenceA. J. Hoogendijk et al. (nov 2019) Cell reports 29 8 2505--2519.e4
Dynamic Transcriptome-Proteome Correlation Networks Reveal Human Myeloid Differentiation and Neutrophil-Specific Programming.
Human neutrophilic granulocytes form the largest pool of innate immune cells for host defense against bacterial and fungal pathogens. The dynamic changes that accompany the metamorphosis from a proliferating myeloid progenitor cell in the bone marrow into a mature non-dividing polymorphonuclear blood cell have remained poorly defined. Using mass spectrometry-based quantitative proteomics combined with transcriptomic data, we report on the dynamic changes of five developmental stages in the bone marrow and blood. Integration of transcriptomes and proteome unveils highly dynamic and differential interactions between RNA and protein kinetics during human neutrophil development, which can be linked to functional maturation of typical end-stage blood neutrophil killing activities. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse) - ReferenceM. Yassin et al. (nov 2018) Journal of Crohn's colitis 12 12 1459--1474
Rectal Insulin Instillation Inhibits Inflammation and Tumor Development in Chemically Induced Colitis.
Background and Aims Epithelial expression of the insulin receptor in the colon has previously been reported to correlate with extent of colonic inflammation. However, the impact of insulin signalling in the intestinal mucosa is still unknown. Here, we investigated the effects of inactivating the epithelial insulin receptor in the intestinal tract, in an experimental model of inflammation-induced colorectal cancer. Methods The mice were generated by utilizing the intestinal- and epithelial-specific villin promoter and the Cre-Lox technology. All mice included in the cohorts were generated by crossing [vil-Cre-INSR+/-] × [INSRfl/fl] to obtain [vil-Cre-INSR-/-], and their floxed littermates [INSRfl/fl] served as the control group. For the intervention study, phosphate-buffered saline with or without insulin was instilled rectally in anaesthetized wild-type mice with chemically induced colitis. Results We found higher endoscopic colitis scores together with potentiated colonic tumorigenesis in the knockout mice. Furthermore, we showed that topically administered insulin in inflamed colons of wild-type mice reduced inflammation-induced weight loss and improved remission in a dose-dependent manner. Mice receiving rectal insulin enemas exhibited lower colitis endoscopic scores and reduced cyclooxygenase 2 mRNA expression, and developed significantly fewer and smaller tumours compared with the control group receiving phosphate-buffered saline only. Conclusions Rectal insulin therapy could potentially be a novel treatment, targeting the epithelial layer to enhance mucosal healing in ulcerated areas. Our findings open up new possibilities for combination treatments to synergize with the existing anti-inflammatory therapies. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse) - ReferenceH. Sun et al. (oct 2018) Nature microbiology 3 10 1122--1130
Salmonella stimulates pro-inflammatory signalling through p21-activated kinases bypassing innate immune receptors.
Microbial infections are most often countered by inflammatory responses that are initiated through the recognition of conserved microbial products by innate immune receptors and result in pathogen expulsion1-6. However, inflammation can also lead to pathology. Tissues such as the intestinal epithelium, which are exposed to microbial products, are therefore subject to stringent negative regulatory mechanisms to prevent signalling through innate immune receptors6-11. This presents a challenge to the enteric pathogen Salmonella Typhimurium, which requires intestinal inflammation to compete against the resident microbiota and to acquire the nutrients and electron acceptors that sustain its replication12,13. We show here that S. Typhimurium stimulates pro-inflammatory signalling by a unique mechanism initiated by effector proteins that are delivered by its type III protein secretion system. These effectors activate Cdc42 and the p21-activated kinase 1 (PAK1) leading to the recruitment of TNF receptor-associated factor 6 (TRAF6) and mitogen-activated protein kinase kinase kinase 7 (TAK1), and the stimulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) inflammatory signalling. The removal of Cdc42, PAK1, TRAF6 or TAK1 prevented S. Typhimurium from stimulating NF-kappaB signalling in cultured cells. In addition, oral administration of a highly specific PAK inhibitor blocked Salmonella-induced intestinal inflammation and bacterial replication in the mouse intestine, although it resulted in a significant increase in the bacterial loads in systemic tissues. Thus, S. Typhimurium stimulates inflammatory signalling in the intestinal tract by engaging critical downstream signalling components of innate immune receptors. These findings illustrate the unique balance that emerges from host-pathogen co-evolution, in that pathogen-initiated responses that help pathogen replication are also important to prevent pathogen spread to deeper tissues. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse) - ReferenceI. Romero-Calvo et al. (jan 2019) Molecular cancer research : MCR 17 1 70--83
Human Organoids Share Structural and Genetic Features with Primary Pancreatic Adenocarcinoma Tumors.
Patient-derived pancreatic ductal adenocarcinoma (PDAC) organoid systems show great promise for understanding the biological underpinnings of disease and advancing therapeutic precision medicine. Despite the increased use of organoids, the fidelity of molecular features, genetic heterogeneity, and drug response to the tumor of origin remain important unanswered questions limiting their utility. To address this gap in knowledge, primary tumor- and patient-derived xenograft (PDX)-derived organoids, and 2D cultures for in-depth genomic and histopathologic comparisons with the primary tumor were created. Histopathologic features and PDAC representative protein markers (e.g., claudin 4 and CA19-9) showed strong concordance. DNA- and RNA-sequencing (RNAseq) of single organoids revealed patient-specific genomic and transcriptomic consistency. Single-cell RNAseq demonstrated that organoids are primarily a clonal population. In drug response assays, organoids displayed patient-specific sensitivities. In addition, the in vivo PDX response to FOLFIRINOX and gemcitabine/abraxane treatments were examined, which was recapitulated in vitro with organoids. This study has demonstrated that organoids are potentially invaluable for precision medicine as well as preclinical drug treatment studies because they maintain distinct patient phenotypes and respond differently to drug combinations and dosage. IMPLICATIONS: The patient-specific molecular and histopathologic fidelity of organoids indicate that they can be used to understand the etiology of the patient's tumor and the differential response to therapies and suggests utility for predicting drug responses. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse) - ReferenceO. M. Omar et al. (nov 2018) Molecular carcinogenesis 57 11 1577--1587
TFF1 antagonizes TIMP-1 mediated proliferative functions in gastric cancer.
Tissue inhibitor matrix metalloproteinase-1 (TIMP1) is one of four identified members of the TIMP family. We evaluated the role of TIMP1 in gastric cancer using human and mouse tissues along with gastric organoids and in vitro cell models. Using quantitative real-time RT-PCR, we detected significant overexpression of TIMP1 in the human gastric cancer samples, as compared to normal stomach samples (P {\textless} 0.01). We also detected overexpression of Timp1 in neoplastic gastric lesions of the Tff1-knockout (KO) mice, as compared to normal stomach tissues. Reconstitution of TFF1 in human gastric cancer cell lines led to a significant decrease in the mRNA expression level of TIMP1 (P {\textless} 0.05). In vitro analysis demonstrated that TIMP1 mRNA expression is induced by TNF-alpha and activation of NF-kappaB whereas inhibition of NF-kappaB using BAY11-7082 led to inhibition of NF-kappaB and downregulation of TIMP1. Western blot analysis confirmed the decrease in TIMP1 protein level following reconstitution of TFF1. By using immunofluorescence, we showed nuclear localization of NF-kappaB and expression of TIMP1 in gastric organoids established from the Tff1-KO stomach where reconstitution of Tff1 using recombinant protein led to a notable reduction in the expression of both NF-kappaB and TIMP1. Using EDU assay, as a measure of proliferating cells, we found that TIMP1 promotes cellular proliferation whereas TFF1 reconstitution leads to a significant decrease in cellular proliferation (P {\textless} 0.05). In summary, our findings demonstrate overexpression of TIMP1 in mouse and human gastric cancers through NF-kB-dependent mechanism. We also show that TFF1 suppresses NF-kappaB and inhibits TIMP1-mediated proliferative potential in gastric cancer. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse)
Products 37 to 48 of 91 total
Shop By
Filter Results
Filters:
- Resource Type Reference Remove This Item
- Clear All
- Area of Interest
- Epithelial Cell Biology 16 items
- Brand
- EasySep 11 items
- IntestiCult 75 items
- MesenCult 7 items
- RoboSep 1 item
- RosetteSep 1 item
- SepMate 1 item
- Cell Type
- Epithelial Cells 13 items