Showing 25 - 36 of 115 results for "05751"
Products 25 to 25 of 25 total
- ReferenceCheng H-W et al. (MAY 2015) Cell death & disease 6 5 e1753
Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data.
Glioblastoma (GBM) is a common and malignant tumor with a poor prognosis. Glioblastoma stem cells (GSCs) have been reported to be involved in tumorigenesis, tumor maintenance and therapeutic resistance. Thus, to discover novel candidate therapeutic drugs for anti-GBM and anti-GSCs is an urgent need. We hypothesized that if treatment with a drug could reverse, at least in part, the gene expression signature of GBM and GSCs, this drug may have the potential to inhibit pathways essential in the formation of GBM and thereby treat GBM. Here, we collected 356 GBM gene signatures from public databases and queried the Connectivity Map. We systematically evaluated the in vitro antitumor effects of 79 drugs in GBM cell lines. Of the drugs screened, thioridazine was selected for further characterization because it has potent anti-GBM and anti-GSCs properties. When investigating the mechanisms underlying the cytocidal effects of thioridazine, we found that thioridazine induces autophagy in GBM cell lines, and upregulates AMPK activity. Moreover, LC3-II was upregulated in U87MG sphere cells treated with thioridazine. In addition, thioridazine suppressed GBM tumorigenesis and induced autophagy in vivo. We not only repurposed the antipsychotic drug thioridazine as a potent anti-GBM and anti-GSCs agent, but also provided a new strategy to search for drugs with anticancer and anticancer stem cell properties. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceChaumeil MM et al. ( 2016) NeuroImage. Clinical 12 180--9
Hyperpolarized (13)C MR imaging detects no lactate production in mutant IDH1 gliomas: Implications for diagnosis and response monitoring.
Metabolic imaging of brain tumors using (13)C Magnetic Resonance Spectroscopy (MRS) of hyperpolarized [1-(13)C] pyruvate is a promising neuroimaging strategy which, after a decade of preclinical success in glioblastoma (GBM) models, is now entering clinical trials in multiple centers. Typically, the presence of GBM has been associated with elevated hyperpolarized [1-(13)C] lactate produced from [1-(13)C] pyruvate, and response to therapy has been associated with a drop in hyperpolarized [1-(13)C] lactate. However, to date, lower grade gliomas had not been investigated using this approach. The most prevalent mutation in lower grade gliomas is the isocitrate dehydrogenase 1 (IDH1) mutation, which, in addition to initiating tumor development, also induces metabolic reprogramming. In particular, mutant IDH1 gliomas are associated with low levels of lactate dehydrogenase A (LDHA) and monocarboxylate transporters 1 and 4 (MCT1, MCT4), three proteins involved in pyruvate metabolism to lactate. We therefore investigated the potential of (13)C MRS of hyperpolarized [1-(13)C] pyruvate for detection of mutant IDH1 gliomas and for monitoring of their therapeutic response. We studied patient-derived mutant IDH1 glioma cells that underexpress LDHA, MCT1 and MCT4, and wild-type IDH1 GBM cells that express high levels of these proteins. Mutant IDH1 cells and tumors produced significantly less hyperpolarized [1-(13)C] lactate compared to GBM, consistent with their metabolic reprogramming. Furthermore, hyperpolarized [1-(13)C] lactate production was not affected by chemotherapeutic treatment with temozolomide (TMZ) in mutant IDH1 tumors, in contrast to previous reports in GBM. Our results demonstrate the unusual metabolic imaging profile of mutant IDH1 gliomas, which, when combined with other clinically available imaging methods, could be used to detect the presence of the IDH1 mutation in vivo. View PublicationCatalog #: Product Name: 05700 NeuroCult™ Basal Medium (Mouse & Rat) 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05700 Product Name: NeuroCult™ Basal Medium (Mouse & Rat) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceBooth L et al. (AUG 2015) Journal of cellular physiology 230 8 1982--98
OSU-03012 and Viagra Treatment Inhibits the Activity of Multiple Chaperone Proteins and Disrupts the Blood-Brain Barrier: Implications for Anti-Cancer Therapies.
We examined the interaction between OSU-03012 (also called AR-12) with phosphodiesterase 5 (PDE5) inhibitors to determine the role of the chaperone glucose-regulated protein (GRP78)/BiP/HSPA5 in the cellular response. Sildenafil (Viagra) interacted in a greater than additive fashion with OSU-03012 to kill stem-like GBM cells. Treatment of cells with OSU-03012/sildenafil: abolished the expression of multiple oncogenic growth factor receptors and plasma membrane drug efflux pumps and caused a rapid degradation of GRP78 and other HSP70 and HSP90 family chaperone proteins. Decreased expression of plasma membrane receptors and drug efflux pumps was dependent upon enhanced PERK-eIF2α-ATF4-CHOP signaling and was blocked by GRP78 over-expression. In vivo OSU-03012/sildenafil was more efficacious than treatment with celecoxib and sildenafil at killing tumor cells without damaging normal tissues and in parallel reduced expression of ABCB1 and ABCG2 in the normal brain. The combination of OSU-03012/sildenafil synergized with low concentrations of sorafenib to kill tumor cells, and with lapatinib to kill ERBB1 over-expressing tumor cells. In multiplex assays on plasma and human tumor tissue from an OSU-03012/sildenafil treated mouse, we noted a profound reduction in uPA signaling and identified FGF and JAK1/2 as response biomarkers for potentially suppressing the killing response. Inhibition of FGFR signaling and to a lesser extent JAK1/2 signaling profoundly enhanced OSU-03012/sildenafil lethality. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceBooth L et al. (MAY 2015) Journal of cellular physiology 230 5 1115--27
PDE5 inhibitors enhance celecoxib killing in multiple tumor types.
The present studies determined whether clinically relevant phosphodiesterase 5 (PDE5) inhibitors interacted with a clinically relevant NSAID, celecoxib, to kill tumor cells. Celecoxib and PDE5 inhibitors interacted in a greater than additive fashion to kill multiple tumor cell types. Celecoxib and sildenafil killed ex vivo primary human glioma cells as well as their associated activated microglia. Knock down of PDE5 recapitulated the effects of PDE5 inhibitor treatment; the nitric oxide synthase inhibitor L-NAME suppressed drug combination toxicity. The effects of celecoxib were COX2 independent. Over-expression of c-FLIP-s or knock down of CD95/FADD significantly reduced killing by the drug combination. CD95 activation was dependent on nitric oxide and ceramide signaling. CD95 signaling activated the JNK pathway and inhibition of JNK suppressed cell killing. The drug combination inactivated mTOR and increased the levels of autophagy and knock down of Beclin1 or ATG5 strongly suppressed killing by the drug combination. The drug combination caused an ER stress response; knock down of IRE1α/XBP1 enhanced killing whereas knock down of eIF2α/ATF4/CHOP suppressed killing. Sildenafil and celecoxib treatment suppressed the growth of mammary tumors in vivo. Collectively our data demonstrate that clinically achievable concentrations of celecoxib and sildenafil have the potential to be a new therapeutic approach for cancer. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceBooth L et al. (OCT 2014) Molecular Cancer Therapeutics 13 10 2384--2398
Regulation of OSU-03012 Toxicity by ER Stress Proteins and ER Stress-Inducing Drugs
The present studies examined the toxic interaction between the non-coxib celecoxib derivative OSU-03012 and phosphodiesterase 5 (PDE5) inhibitors, and also determined the roles of endoplasmic reticulum stress response regulators in cell survival. PDE5 inhibitors interacted in a greater than additive fashion with OSU-03012 to kill parental glioma and stem-like glioma cells. Knockdown of the endoplasmic reticulum stress response proteins IRE1 or XBP1 enhanced the lethality of OSU-03012, and of [OSU-03012 + PDE5 inhibitor] treatment. Pan-caspase and caspase-9 inhibition did not alter OSU-03012 lethality but did abolish enhanced killing in the absence of IRE1 or XBP1. Expression of the mitochondrial protective protein BCL-XL or the caspase-8 inhibitor c-FLIP-s, or knockdown of death receptor CD95 or the death receptor caspase-8 linker protein FADD, suppressed killing by [OSU-03012 + PDE5 inhibitor] treatment. CD95 activation was blocked by the nitric oxide synthase inhibitor L-NAME. Knockdown of the autophagy regulatory proteins Beclin1 or ATG5 protected the cells from OSU-03012 and from [OSU-03012 + PDE5 inhibitor] toxicity. Knockdown of IRE1 enhanced OSU-03012/[OSU-03012 + PDE5 inhibitor]-induced JNK activation, and inhibition of JNK suppressed the elevated killing caused by IRE1 knockdown. Knockdown of CD95 blunted JNK activation. Collectively, our data demonstrate that PDE5 inhibitors recruit death receptor signaling to enhance OSU-03012 toxicity in glioblastoma multiforme (GBM) cells. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceBooth L et al. (JUL 2015) Journal of cellular physiology 230 7 1661--76
GRP78/BiP/HSPA5/Dna K is a universal therapeutic target for human disease.
The chaperone GRP78/Dna K is conserved throughout evolution down to prokaryotes. The GRP78 inhibitor OSU-03012 (AR-12) interacted with sildenafil (Viagra) or tadalafil (Cialis) to rapidly reduce GRP78 levels in eukaryotes and as a single agent reduce Dna K levels in prokaryotes. Similar data with the drug combination were obtained for: HSP70, HSP90, GRP94, GRP58, HSP27, HSP40 and HSP60. OSU-03012/sildenafil treatment killed brain cancer stem cells and decreased the expression of: NPC1 and TIM1; LAMP1; and NTCP1, receptors for Ebola/Marburg/Hepatitis A, Lassa fever, and Hepatitis B viruses, respectively. Pre-treatment with OSU-03012/sildenafil reduced expression of the coxsakie and adenovirus receptor in parallel with it also reducing the ability of a serotype 5 adenovirus or coxsakie virus B4 to infect and to reproduce. Similar data were obtained using Chikungunya, Mumps, Measles, Rubella, RSV, CMV, and Influenza viruses. OSU-03012 as a single agent at clinically relevant concentrations killed laboratory generated antibiotic resistant E. coli and clinical isolate multi-drug resistant N. gonorrhoeae and MRSE which was in bacteria associated with reduced Dna K and Rec A expression. The PDE5 inhibitors sildenafil or tadalafil enhanced OSU-03012 killing in N. gonorrhoeae and MRSE and low marginally toxic doses of OSU-03012 could restore bacterial sensitivity in N. gonorrhoeae to multiple antibiotics. Thus, Dna K and bacterial phosphodiesterases are novel antibiotic targets, and inhibition of GRP78 is of therapeutic utility for cancer and also for bacterial and viral infections. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceBinder ZA et al. ( 2016) PloS one 11 3 e0150271
Establishment and Biological Characterization of a Panel of Glioblastoma Multiforme (GBM) and GBM Variant Oncosphere Cell Lines.
OBJECTIVE Human tumor cell lines form the basis of the majority of present day laboratory cancer research. These models are vital to studying the molecular biology of tumors and preclinical testing of new therapies. When compared to traditional adherent cell lines, suspension cell lines recapitulate the genetic profiles and histologic features of glioblastoma multiforme (GBM) with higher fidelity. Using a modified neural stem cell culture technique, here we report the characterization of GBM cell lines including GBM variants. METHODS Tumor tissue samples were obtained intra-operatively and cultured in neural stem cell conditions containing growth factors. Tumor lines were characterized in vitro using differentiation assays followed by immunostaining for lineage-specific markers. In vivo tumor formation was assayed by orthotopic injection in nude mice. Genetic uniqueness was confirmed via short tandem repeat (STR) DNA profiling. RESULTS Thirteen oncosphere lines derived from GBM and GBM variants, including a GBM with PNET features and a GBM with oligodendroglioma component, were established. All unique lines showed distinct genetic profiles by STR profiling. The lines assayed demonstrated a range of in vitro growth rates. Multipotency was confirmed using in vitro differentiation. Tumor formation demonstrated histologic features consistent with high grade gliomas, including invasion, necrosis, abnormal vascularization, and high mitotic rate. Xenografts derived from the GBM variants maintained histopathological features of the primary tumors. CONCLUSIONS We have generated and characterized GBM suspension lines derived from patients with GBMs and GBM variants. These oncosphere cell lines will expand the resources available for preclinical study. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceBinder ZA et al. ( 2013) PloS one 8 10 e75945
Podocalyxin-like protein is expressed in glioblastoma multiforme stem-like cells and is associated with poor outcome.
Glioblastoma multiforme (GBM) is the most common primary malignant adult brain tumor and is associated with poor survival. Recently, stem-like cell populations have been identified in numerous malignancies including GBM. To identify genes whose expression is changed with differentiation, we compared transcript profiles from a GBM oncosphere line before and after differentiation. Bioinformatic analysis of the gene expression profiles identified podocalyxin-like protein (PODXL), a protein highly expressed in human embryonic stem cells, as a potential marker of undifferentiated GBM stem-like cells. The loss of PODXL expression upon differentiation of GBM stem-like cell lines was confirmed by quantitative real-time PCR and flow cytometry. Analytical flow cytometry of numerous GBM oncosphere lines demonstrated PODXL expression in all lines examined. Knockdown studies and flow cytometric cell sorting experiments demonstrated that PODXL is involved in GBM stem-like cell proliferation and oncosphere formation. Compared to PODXL-negative cells, PODXL-positive cells had increased expression of the progenitor/stem cell markers Musashi1, SOX2, and BMI1. Finally, PODXL expression directly correlated with increasing glioma grade and was a marker for poor outcome in patients with GBM. In summary, we have demonstrated that PODXL is expressed in GBM stem-like cells and is involved in cell proliferation and oncosphere formation. Moreover, high PODXL expression correlates with increasing glioma grade and decreased overall survival in patients with GBM. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceBeliveau A et al. (MAY 2016) Scientific reports 6 26143
Aligned Nanotopography Promotes a Migratory State in Glioblastoma Multiforme Tumor Cells.
Glioblastoma multiforme (GBM) is an aggressive, Grade IV astrocytoma with a poor survival rate, primarily due to the GBM tumor cells migrating away from the primary tumor site along the nanotopography of white matter tracts and blood vessels. It is unclear whether this nanotopography influences the biomechanical properties (i.e. cytoskeletal stiffness) of GBM tumor cells. Although GBM tumor cells have an innate propensity to migrate, we believe this capability is enhanced due to the influence of nanotopography on the tumor cells' biomechanical properties. In this study, we used an aligned nanofiber film that mimics the nanotopography in the tumor microenvironment to investigate the mechanical properties of GBM tumor cells in vitro. The data demonstrate that the cytoskeletal stiffness, cell traction stress, and focal adhesion area were significantly lower in the GBM tumor cells compared to healthy astrocytes. Moreover, the cytoskeletal stiffness was significantly reduced when cultured on aligned nanofiber films compared to smooth and randomly aligned nanofiber films. Gene expression analysis showed that tumor cells cultured on the aligned nanotopography upregulated key migratory genes and downregulated key proliferative genes. Therefore, our data suggest that the migratory potential is elevated when GBM tumor cells are migrating along aligned nanotopographical substrates. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceBai H et al. (JAN 2016) Nature genetics 48 1 59--66
Integrated genomic characterization of IDH1-mutant glioma malignant progression.
Gliomas represent approximately 30% of all central nervous system tumors and 80% of malignant brain tumors. To understand the molecular mechanisms underlying the malignant progression of low-grade gliomas with mutations in IDH1 (encoding isocitrate dehydrogenase 1), we studied paired tumor samples from 41 patients, comparing higher-grade, progressed samples to their lower-grade counterparts. Integrated genomic analyses, including whole-exome sequencing and copy number, gene expression and DNA methylation profiling, demonstrated nonlinear clonal expansion of the original tumors and identified oncogenic pathways driving progression. These include activation of the MYC and RTK-RAS-PI3K pathways and upregulation of the FOXM1- and E2F2-mediated cell cycle transitions, as well as epigenetic silencing of developmental transcription factor genes bound by Polycomb repressive complex 2 in human embryonic stem cells. Our results not only provide mechanistic insight into the genetic and epigenetic mechanisms driving glioma progression but also identify inhibition of the bromodomain and extraterminal (BET) family as a potential therapeutic approach. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceBadr CE et al. (MAY 2013) JNCI: Journal of the National Cancer Institute 105 9 643--653
Targeting Cancer Cells With the Natural Compound Obtusaquinone
BACKGROUND Tumor cells present high levels of oxidative stress. Cancer therapeutics exploiting such biochemical changes by increasing reactive oxygen species (ROS) production or decreasing intracellular ROS scavengers could provide a powerful treatment strategy. METHODS To test the effect of our compound, obtusaquinone (OBT), we used several cell viability assays on seven different glioblastoma (GBM) cell lines and primary cells and on 12 different cell lines representing various cancer types in culture as well as on subcutaneous (n = 7 mice per group) and two intracranial GBM (n = 6-8 mice per group) and breast cancer (n = 6 mice per group) tumor models in vivo. Immunoblotting, immunostaining, flow cytometry, and biochemical assays were used to investigate the OBT mechanism of action. Histopathological analysis (n = 2 mice per group) and blood chemistry (n = 2 mice per group) were used to test for any compound-related toxicity. Statistical tests were two-sided. RESULTS OBT induced rapid increase in intracellular ROS levels, downregulation of cellular glutathione levels and increase in its oxidized form, and activation of cellular stress pathways and DNA damage, subsequently leading to apoptosis. Oxidative stress is believed to be the main mechanism through which this compounds targets cancer cells. OBT was well tolerated in mice, slowed tumor growth, and statistically prolonged survival in GBM tumor models. The ratio of median survival in U251 intracranial model in OBT vs control was 1.367 (95% confidence interval [CI] of ratio = 1.031 to 1.367, P = .008). Tumor growth inhibition was also observed in a mouse breast cancer model (average tumor volume per mouse, OBT vs control: 36.3 vs 200.4mm(3), difference = 164.1mm(3), 95% CI =72.6 to 255.6mm(3), P = .005). CONCLUSIONS Given its properties and efficacy in cancer killing, our results suggest that OBT is a promising cancer therapeutic. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceAlessandrini F et al. ( 2016) Journal of Cancer 7 13 1791--1797
Noninvasive Monitoring of Glioma Growth in the Mouse.
Malignant gliomas are the most common and deadly primary malignant brain tumors. In vivo orthotopic models could doubtless represent an appropriate tool to test novel treatment for gliomas. However, methods commonly used to monitor the growth of glioma inside the mouse brain are time consuming and invasive. We tested the reliability of a minimally invasive procedure, based on a secreted luciferase (Gaussia luciferase), to frequently monitor the changes of glioma size. Gluc activity was evaluated from blood samples collected from the tail tip of mice twice a week, allowing to make a growth curve for the tumors. We validated the correlation between Gluc activity and tumor size by analysing the tumor after brain dissection. We found that this method is reliable for monitoring human glioma transplanted in immunodeficient mice, but it has strong limitation in immunocompetent models, where an immune response against the luciferase is developed during the first weeks after transplant. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human)
Products 25 to 25 of 25 total
Shop By
Filter Results
- Resource Type
- Product Information Sheet 1 item
- Reference 112 items
- Safety Data Sheet 1 item
- Technical Manual 1 item
- Product Type
- Cell Culture Media and Supplements 1 item
- Area of Interest
- Angiogenic Cell Research 1 item
- Cancer 20 items
- Drug Discovery and Toxicity Testing 1 item
- Neuroscience 99 items
- Stem Cell Biology 2 items
- Brand
- ALDEFLUOR 1 item
- IntestiCult 1 item
- NeuroCult 110 items
- TeSR 1 item
- Cell Type
- Brain Tumor Stem Cells 65 items
- Cancer Cells and Cell Lines 14 items
- Neural Stem and Progenitor Cells 82 items
- Pluripotent Stem Cells 1 item