Showing 13 - 24 of 51 results for "05401"
11 Products
- ReferenceCutler AJ et al. (DEC 2010) Journal of immunology (Baltimore, Md. : 1950) 185 11 6617--23
Umbilical cord-derived mesenchymal stromal cells modulate monocyte function to suppress T cell proliferation.
Mesenchymal stromal cells (MSCs) may be derived from a variety of tissues, with human umbilical cord (UC) providing an abundant and noninvasive source. Human UC-MSCs share similar in vitro immunosuppressive properties as MSCs obtained from bone marrow and cord blood. However, the mechanisms and cellular interactions used by MSCs to control immune responses remain to be fully elucidated. In this paper, we report that suppression of mitogen-induced T cell proliferation by human UC-, bone marrow-, and cord blood-MSCs required monocytes. Removal of monocytes but not B cells from human adult PBMCs (PBMNCs) reduced the immunosuppressive effects of MSCs on T cell proliferation. There was rapid modulation of a number of cell surface molecules on monocytes when PBMCs or alloantigen-activated PBMNCs were cultured with UC-MSCs. Indomethacin treatment significantly inhibited the ability of UC-MSCs to suppress T cell proliferation, indicating an important role for PGE(2). Monocytes purified from UC-MSC coculture had significantly reduced accessory cell and allostimulatory function when tested in subsequent T cell proliferation assays, an effect mediated in part by UC-MSC PGE(2) production and enhanced by PBMNC alloactivation. Therefore, we identify monocytes as an essential intermediary through which UC-MSCs mediate their suppressive effects on T cell proliferation. View PublicationCatalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) - ReferenceYañ et al. (NOV 2010) Experimental cell research 316 19 3109--23
Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells.
Mesenchymal stromal cells (MSCs) have important immunosuppressive properties, but the mechanisms and soluble factors involved in these effects remain unclear. We have studied prostaglandin-E2 (PGE2) as a possible candidate implied in adipose tissue-derived MSCs (Ad-MSCs) immunosuppressive properties over dendritic cells and T lymphocytes, compared to bone marrow derived MSCs (BM-MSCs). We found that both MSCs inhibited the maturation of myeloid-DCs and plasmocytoid-DCs. High levels of PGE2 were detected in DCs/MSCs co-cultures. Its blockade with indomethacin (IDM) allowed plasmocytoid-DCs but not myeloid-DCs maturation. Additionally, high levels of PGE2 were found in co-cultures in which Ad-MSCs or BM-MSCs inhibited activated T cells proliferation and pro-inflammatory cytokines production. PGE2 blockade by IDM preserved T lymphocytes proliferation but did not restore the pro-inflammatory cytokines secretion. However, an increased expression of transcription factors and cytokines genes involved in the Th1/Th2 differentiation pathway was detected in the T cells co-cultured with Ad-MSCs, but not with BM-MSCs. In conclusion, we propose that PGE2 is a soluble factor mediating most of the immunosuppressive effects of Ad-MSCs and BM-MSCs over p-DCs maturation and activated T lymphocytes proliferation and cytokine secretion. View PublicationCatalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) - ReferenceSeebach C et al. (JUL 2010) Injury 41 7 731--8
Comparison of six bone-graft substitutes regarding to cell seeding efficiency, metabolism and growth behaviour of human mesenchymal stem cells (MSC) in vitro.
INTRODUCTION: Various synthetic bone-graft substitutes are used commercially as osteoconductive scaffolds in the treatment of bone defects and fractures. The role of bone-graft substitutes is changing from osteoconductive conduits for growth to an delivery system for biologic fracture treatments. Achieving optimal bone regeneration requires biologics (e.g. MSC) and using the correct scaffold incorporated into a local environment for bone regeneration. The need for an unlimited supply with high quality bone-graft substitutes continue to find alternatives for bone replacement surgery. MATERIALS AND METHODS: This in vitro study investigates cell seeding efficiency, metabolism, gene expression and growth behaviour of MSC sown on six commercially clinical available bone-graft substitutes in order to define their biological properties: synthetic silicate-substituted porous hydroxyapatite (Actifuse ABX), synthetic alpha-TCP (Biobase), synthetic beta-TCP (Vitoss), synthetic beta-TCP (Chronos), processed human cancellous allograft (Tutoplast) and processed bovines hydroxyapatite ceramic (Cerabone). 250,000 MSC derived from human bone marrow (n=4) were seeded onto the scaffolds, respectively. On days 2, 6 and 10 the adherence of MSC (fluorescence microscopy) and cellular activity (MTT assay) were analysed. Osteogenic gene expression (cbfa-1) was analysed by RT-PCR and scanning electron microscopy was performed. RESULTS: The highest number of adhering cells was found on Tutoplast (e.g. day 6: 110.0+/-24.0 cells/microscopic field; ptextless0.05) followed by Chronos (47.5+/-19.5, ptextless0.05), Actifuse ABX (19.1+/-4.4), Biobase (15.7+/-9.9), Vitoss (8.8+/-8.7) and Cerabone (8.1+/-2.2). MSC seeded onto Tutoplast showed highest metabolic activity and gene expression of cbfa-1. These data are confirmed by scanning electron microscopy. The cell shapes varied from round-shaped cells to wide spread cells and cell clusters, depending on the bone-graft substitutes. Processed human cancellous allograft is a well-structured and biocompatible scaffold for ingrowing MSC in vitro. Of all other synthetical scaffolds, beta-tricalcium phosphate (Chronos) have shown the best growth behaviour for MSC. DISCUSSION: Our results indicate that various bone-graft substitutes influence cell seeding efficiency, metabolic activity and growth behaviour of MSC in different manners. We detected a high variety of cellular integration of MSC in vitro, which may be important for bony integration in the clinical setting. View PublicationCatalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) - ReferencePitchford SC et al. (FEB 2010) Journal of pharmacological and toxicological methods 61 2 113--21
Troubleshooting: Quantification of mobilization of progenitor cell subsets from bone marrow in vivo.
INTRODUCTION: The molecular mechanisms that control the mobilization of specific stem cell subsets from the bone marrow are currently being intensely investigated. It is anticipated that boosting the mobilization of these stem cells via pharmacological intervention will not only produce more effective strategies for bone marrow transplant patients, but also provide novel therapeutic approaches for tissue regeneration. METHODS: Measurement of stem cell mobilization by sampling peripheral blood is problematic because it is technically difficult to accurately determine absolute numbers of rare progenitor cells by blood sampling. Furthermore a rise in progenitors may be caused by release of stem cells from tissues other than the bone marrow (e.g. spleen and adipose), or indeed an inhibition of stem cell homing back to the bone marrow or other tissues. Finally it is not possible to distinguish whether the pharmacological agent is acting directly at the level of the bone marrow or mobilizing progenitors by a distinct indirect mechanism. To resolve these problems, we have developed a technique that allows perfusion of the vasculature of the hind limb bone marrow in situ in mice. In this system, the femoral artery and vein are cannulated in situ such that the femur and tibia bone marrow are perfused in isolation under anaesthesia. As such, pharmacological agents can be administered directly into the bone marrow vasculature. Mobilized cells are then collected via the femoral vein and colony assays performed in defined growth media to allow identification of haematopoietic, endothelial, and mesenchymal progenitor cells. We have used this system to determine the ability of a CXCR4 antagonist to mobilize these distinct types of progenitor cells from the bone marrow of mice pre-conditioned with either G-CSF or VEGF. RESULTS AND CONCLUSION: This isolated hind limb perfusion system has allowed comparisons to be made between cytokines (G-CSF and VEGF) that act chronically, either alone or in combination with agents that act acutely on the bone marrow (CXCR4 antagonist) on their ability to directly mobilize specific populations of stem cells. Data obtained therefore gives a more accurate understanding of the efficacy of different mobilizing strategies compared to peripheral blood analysis. View PublicationCatalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) - ReferenceMenendez P et al. (DEC 2009) The Journal of experimental medicine 206 13 3131--41
Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene.
MLL-AF4 fusion is a hallmark genetic abnormality in infant B-acute lymphoblastic leukemia (B-ALL) known to arise in utero. The cellular origin of leukemic fusion genes during human development is difficult to ascertain. The bone marrow (BM) microenvironment plays an important role in the pathogenesis of several hematological malignances. BM mesenchymal stem cells (BM-MSC) from 38 children diagnosed with cytogenetically different acute leukemias were screened for leukemic fusion genes. Fusion genes were absent in BM-MSCs of childhood leukemias carrying TEL-AML1, BCR-ABL, AML1-ETO, MLL-AF9, MLL-AF10, MLL-ENL or hyperdiploidy. However, MLL-AF4 was detected and expressed in BM-MSCs from all cases of MLL-AF4(+) B-ALL. Unlike leukemic blasts, MLL-AF4(+) BM-MSCs did not display monoclonal Ig gene rearrangements. Endogenous or ectopic expression of MLL-AF4 exerted no effect on MSC culture homeostasis. These findings suggest that MSCs may be in part tumor-related, highlighting an unrecognized role of the BM milieu on the pathogenesis of MLL-AF4(+) B-ALL. MLL-AF4 itself is not sufficient for MSC transformation and the expression of MLL-AF4 in MSCs is compatible with a mesenchymal phenotype, suggesting a differential impact in the hematopoietic system and mesenchyme. The absence of monoclonal rearrangements in MLL-AF4(+) BM-MSCs precludes the possibility of cellular plasticity or de-differentiation of B-ALL blasts and suggests that MLL-AF4 might arise in a population of prehematopoietic precursors. View PublicationCatalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) - ReferenceWang L-S et al. (FEB 2010) Biomaterials 31 6 1148--57
Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture.
We report an injectable hydrogel scaffold system with tunable stiffness for controlling the proliferation rate and differentiation of human mesenchymal stem cells (hMSCs) in a three-dimensional (3D) context in normal growth media. The hydrogels composed of gelatin-hydroxyphenylpropionic acid (Gtn-HPA) conjugate were formed using the oxidative coupling of HPA moieties catalyzed by hydrogen peroxide (H(2)O(2)) and horseradish peroxidase (HRP). The stiffness of the hydrogels was readily tuned by varying the H(2)O(2) concentration without changing the concentration of polymer precursor. We found that the hydrogel stiffness strongly affected the cell proliferation rates. The rate of hMSC proliferation increased with the decrease in the stiffness of the hydrogel. Also, the neurogenesis of hMSCs was controlled by the hydrogel stiffness in a 3D context without the use of any additional biochemical signal. These cells which were cultured in hydrogels with lower stiffness for 3 weeks expressed much more neuronal protein markers compared to those cultured within stiffer hydrogels for the same period of time. View PublicationCatalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) - ReferenceBui KCT et al. (FEB 2010) American journal of respiratory and critical care medicine 181 3 226--37
Recovery of multipotent progenitors from the peripheral blood of patients requiring extracorporeal membrane oxygenation support.
RATIONALE: Studies have demonstrated that bone marrow-derived cells can be recruited to injured lungs through an unknown mechanism. We hypothesize that marrow progenitors are mobilized into the circulation of patients with cardiac and/or respiratory failure, and may then traffic to and incorporate into the sites of tissue injury. OBJECTIVES: To determine whether progenitor populations are increased in the blood of patients with severe acute cardiorespiratory failure placed on extracorporeal membrane oxygenation (ECMO). METHODS: Mononuclear cells from ECMO, umbilical cord, and control blood samples were evaluated in colony-forming assays for hematopoietic, mesenchymal, and epithelial cells. Progenitors were identified by proliferative and differentiative capacities, and confirmed by the expression of lineage-specific markers. MEASUREMENTS AND MAIN RESULTS: Significantly higher levels of hematopoietic progenitors were observed in ECMO (n = 41) samples than neonatal intensive care unit (n = 16) or pediatric intensive care unit controls (n = 14). Hematopoietic progenitor mobilization increased with time on ECMO support. Mesenchymal progenitors (MSC) were recovered from 18/58 ECMO samples with rapid sample processing (textless 4 h) critical to their recovery. MSC were not recovered from normal controls. ECMO-derived MSC had osteogenic, chondrogenic, and adipogenic differentiation potential. The recovery of MSC did not influence survival outcome (61%). Epithelial progenitors were observed in eight ECMO samples but not in control samples. Their presence was associated with a lower survival trend (38%). CONCLUSIONS: Hematopoietic, mesenchymal, and epithelial progenitors were mobilized into the circulation of patients on ECMO. This may reflect a response to severe cardiopulmonary injury, blood-foreign surface interactions with the ECMO circuit, and/or hemodilution. View PublicationCatalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) 84434 MethoCult™ GF H84434 Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) Catalog #: 84434 Product Name: MethoCult™ GF H84434 - ReferenceFeng Y et al. (SEP 2010) Progress in biophysics and molecular biology 103 1 148--56
Unique biomechanical interactions between myeloma cells and bone marrow stroma cells.
We observed that BMSCs (bone marrow stromal cells) from myeloma patients (myeloma BMSCs) were significantly stiffer than control BMSCs using a cytocompression device. The stiffness of myeloma BMSCs and control BMSCs was further increased upon priming by myeloma cells. Additionally, myeloma cells became stiffer when primed by myeloma BMSCs. The focal adhesion kinase activity of myeloma cells was increased when cells were on stiffer collagen gels and on myeloma BMSCs. This change in myeloma stiffness is associated with increased colony formation of myeloma cells and FAK activation when co-cultured with stiffer myeloma BMSCs or stiffer collagen. Additionally, stem cells of RPMI8226 cells became stiffer after priming by myeloma BMSCs, with concomitant increases of stem cell colony formation. These results suggest the presence of a mechanotransduction loop between myeloma cells and myeloma BMSCs to increase the stiffness of both types of cells via FAK activation. The increase of stiffness may in turn support the growth of myeloma cells and myeloma stem cells. View PublicationCatalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) - ReferenceChang HL et al. (FEB 2010) Reproductive sciences (Thousand Oaks, Calif.) 17 2 158--67
Uterine leiomyomas exhibit fewer stem/progenitor cell characteristics when compared with corresponding normal myometrium.
Uterine leiomyomas (also known as uterine fibroids) are the most common benign tumors of female reproductive tract and are the single most common indication for hysterectomies. Despite their high prevalence, the exact pathogenesis of these benign tumors is still unknown. One possible mechanism for leiomyoma formation is dysregulation of mesenchymal stem cell activity. Mesenchymal stem cells have been identified in both human and murine uteri and cancer stem cells have been identified in female reproductive malignancies. We compared stem/progenitor cell characteristics in both normal myometrium and the corresponding leiomyoma of patient's undergoing hysterectomies. We found that leiomyoma cells form fewer mesenchymal stem cell colonies and exhibit less Hoechst dye-excluding side population (SP) activity, which is a function associated with progenitor cells in other tissues, than cells isolated from normal myometrium. Whereas in normal myometrium, we observed heterogeneous expression of CD90, a cell surface marker associated the with differentiation potential of uterine fibroblasts, in leiomyomas, we observed homogenous expression of CD90, suggesting leiomyoma cells are more terminally differentiated. Furthermore, we found that while leiomyoma cells could only produce CD90 expressing cells, both CD90+ and CD90- myometrial cells could reestablish their original heterogeneous CD90 profile when expanded in vitro. These results suggest that normal myometrium contains cells with stem/progenitor cell activities that are absent in leiomyomas. View PublicationCatalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) - ReferenceAvanzini MA et al. (DEC 2009) Haematologica 94 12 1649--60
Generation of mesenchymal stromal cells in the presence of platelet lysate: a phenotypic and functional comparison of umbilical cord blood- and bone marrow-derived progenitors.
BACKGROUND: Mesenchymal stromal cells are employed in various different clinical settings in order to modulate immune response. However, relatively little is known about the mechanisms responsible for their immunomodulatory effects, which could be influenced by both the cell source and culture conditions. DESIGN AND METHODS: We tested the ability of a 5% platelet lysate-supplemented medium to support isolation and ex vivo expansion of mesenchymal stromal cells from full-term umbilical-cord blood. We also investigated the biological/functional properties of umbilical cord blood mesenchymal stromal cells, in comparison with platelet lysate-expanded bone marrow mesenchymal stromal cells. RESULTS: The success rate of isolation of mesenchymal stromal cells from umbilical cord blood was in the order of 20%. These cells exhibited typical morphology, immunophenotype and differentiation capacity. Although they have a low clonogenic efficiency, umbilical cord blood mesenchymal stromal cells may possess high proliferative potential. The genetic stability of these cells from umbilical cord blood was demonstrated by a normal molecular karyotype; in addition, these cells do not express hTERT and telomerase activity, do express p16(ink4a) protein and do not show anchorage-independent cell growth. Concerning alloantigen-specific immune responses, umbilical cord blood mesenchymal stromal cells were able to: (i) suppress T- and NK-lymphocyte proliferation, (ii) decrease cytotoxic activity and (iii) only slightly increase interleukin-10, while decreasing interferon-gamma secretion, in mixed lymphocyte culture supernatants. While an indoleamine 2,3-dioxygenase-specific inhibitor did not reverse mesenchymal stromal cell-induced suppressive effects, a prostaglandin E(2)-specific inhibitor hampered the suppressive effect of both umbilical cord blood- and bone marrow-mesenchymal stromal cells on alloantigen-induced cytotoxic activity. Mesenchymal stromal cells from both sources expressed HLA-G. CONCLUSIONS: Umbilical cord blood- and bone marrow-mesenchymal stromal cells may differ in terms of clonogenic efficiency, proliferative capacity and immunomodulatory properties; these differences may be relevant for clinical applications. View PublicationCatalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) - ReferenceSeeger FH et al. (NOV 2009) Arteriosclerosis, thrombosis, and vascular biology 29 11 1802--9
CXCR4 expression determines functional activity of bone marrow-derived mononuclear cells for therapeutic neovascularization in acute ischemia.
OBJECTIVE: Bone marrow-derived mononuclear cells (BMCs) improve the functional recovery after ischemia. However, BMCs comprise a heterogeneous mixture of cells, and it is not known which cell types are responsible for the induction of neovascularization after cell therapy. Because cell recruitment is critically dependent on the expression of the SDF-1-receptor CXCR4, we examined whether the expression of CXCR4 may identify a therapeutically active population of BMCs. METHODS AND RESULTS: Human CXCR4(+) and CXCR4(-) BMCs were sorted by magnetic beads. CXCR4(+) BMCs showed a significantly higher invasion capacity under basal conditions and after SDF-1 stimulation. Hematopoietic or mesenchymal colony-forming capacity did not differ between CXCR4(+) and CXCR4(-) BMCs. Injection of CXCR4(+) BMCs in mice after induction of hindlimb ischemia significantly improved the recovery of perfusion compared to injection of CXCR4(-) BMCs. Likewise, capillary density was significantly increased in CXCR4(+) BMC-treated mice. Because part of the beneficial effects of cell therapy were attributed to the release of paracrine effectors, we analyzed BMC supernatants for secreted factors. Importantly, supernatants of CXCR4(+) BMCs were enriched in the proangiogenic cytokines HGF and PDGF-BB. CONCLUSIONS: CXCR4(+) BMCs exhibit an increased therapeutic potential for blood flow recovery after acute ischemia. Mechanistically, their higher migratory capacity and their increased release of paracrine factors may contribute to enhanced tissue repair. View PublicationCatalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) 84534 MethoCult™ GF H84534 Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) Catalog #: 84534 Product Name: MethoCult™ GF H84534 - ReferenceCremona CA and Lloyd AC (SEP 2009) Journal of cell science 122 Pt 18 3272--81
Loss of anchorage in checkpoint-deficient cells increases genomic instability and promotes oncogenic transformation.
Mammalian cells generally require both mitogens and anchorage signals in order to proliferate. An important characteristic of many tumour cells is that they have lost this anchorage-dependent cell-cycle checkpoint, allowing them to proliferate without signals provided by their normal microenvironment. In the absence of anchorage signals from the extracellular matrix, many cell types arrest cell-cycle progression in G1 phase as a result of Rb-dependent checkpoints. However, despite inactivation of p53 and Rb proteins, SV40LT-expressing cells retain anchorage dependency, suggesting the presence of an uncharacterised cell-cycle checkpoint, which can be overridden by coexpression of oncogenic Ras. We report here that, although cyclin-CDK complexes persisted in suspension, proliferation was inhibited in LT-expressing cells by the CDK inhibitor p27(Kip1) (p27). Interestingly, this did not induce a stable arrest, but aberrant cell-cycle progression associated with stalled DNA replication, rereplication and chromosomal instability, which was sufficient to increase the frequency of oncogenic transformation. These results firstly indicate loss of anchorage in Rb- and p53-deficient cells as a novel mechanism for promotion of genomic instability; secondly suggest that anchorage checkpoints that protect normal cells from inappropriate proliferation act deleteriously in Rb- and p53-deficient cells to promote tumourigenesis; and thirdly indicate caution in the use of CDK inhibitors for cancer treatment. View PublicationCatalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human)
11 Products
Shop By
Filter Results
- Resource Type
- Product Information Sheet 2 items
- Reference 48 items
- Safety Data Sheet 1 item
- Area of Interest
- Cancer 1 item
- Immunology 5 items
- Stem Cell Biology 37 items
- Brand
- IntestiCult 2 items
- MesenCult 45 items
- MethoCult 2 items
- RosetteSep 3 items
- Cell Type
- Hematopoietic Stem and Progenitor Cells 1 item
- Mesenchymal Stem and Progenitor Cells 37 items
- Pluripotent Stem Cells 1 item