Showing 13 - 24 of 97 results for "06005"
Products 13 to 24 of 103 total
- ReferenceS. F. Fitzgerald et al. ( 2019) PLoS pathogens 15 10 e1008003
Shiga toxin sub-type 2a increases the efficiency of Escherichia coli O157 transmission between animals and restricts epithelial regeneration in bovine enteroids.
Specific Escherichia coli isolates lysogenised with prophages that express Shiga toxin (Stx) can be a threat to human health, with cattle being an important natural reservoir. In many countries the most severe pathology is associated with enterohaemorrhagic E. coli (EHEC) serogroups that express Stx subtype 2a. In the United Kingdom, phage type (PT) 21/28 O157 strains have emerged as the predominant cause of life-threatening EHEC infections and this phage type commonly encodes both Stx2a and Stx2c toxin types. PT21/28 is also epidemiologically linked to super-shedding ({\textgreater}103 cfu/g of faeces) which is significant for inter-animal transmission and human infection as demonstrated using modelling studies. We demonstrate that Stx2a is the main toxin produced by stx2a+/stx2c+ PT21/28 strains induced with mitomycin C and this is associated with more rapid induction of gene expression from the Stx2a-encoding prophage compared to that from the Stx2c-encoding prophage. Bacterial supernatants containing either Stx2a and/or Stx2c were demonstrated to restrict growth of bovine gastrointestinal organoids with no restriction when toxin production was not induced or prevented by mutation. Isogenic strains that differed in their capacity to produce Stx2a were selected for experimental oral colonisation of calves to assess the significance of Stx2a for both super-shedding and transmission between animals. Restoration of Stx2a expression in a PT21/28 background significantly increased animal-to-animal transmission and the number of sentinel animals that became super-shedders. We propose that while both Stx2a and Stx2c can restrict regeneration of the epithelium, it is the relatively rapid and higher levels of Stx2a induction, compared to Stx2c, that have contributed to the successful emergence of Stx2a+ E. coli isolates in cattle in the last 40 years. We propose a model in which Stx2a enhances E. coli O157 colonisation of in-contact animals by restricting regeneration and turnover of the colonised gastrointestinal epithelium. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse) - ReferenceW. Chang et al. (may 2020) Cell stem cell 26 5 739--754.e8
Hormonal Suppression of Stem Cells Inhibits Symmetric Cell Division and Gastric Tumorigenesis.
Cancer is believed to arise from stem cells, but mechanisms that limit the acquisition of mutations and tumor development have not been well defined. We show that a +4 stem cell (SC) in the gastric antrum, marked by expression of Cck2r (a GPCR) and Delta-like ligand 1 (DLL1), is a label-retaining cell that undergoes predominant asymmetric cell division. This +4 antral SC is Notch1low/ Numb+ and repressed by signaling from gastrin-expressing endocrine (G) cells. Chemical carcinogenesis of the stomach is associated with loss of G cells, increased symmetric stem cell division, glandular fission, and more rapid stem cell lineage tracing, a process that can be suppressed by exogenous gastrin treatment. This hormonal suppression is associated with a marked reduction in gastric cancer mutational load, as revealed by exomic sequencing. Taken together, our results show that gastric tumorigenesis is associated with increased symmetric cell division that facilitates mutation and is suppressed by GPCR signaling. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse) - Product Information Sheet
Catalog #: Lot #: Language Product Name: 06005 All English IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Lot #: All Language English Product Name: IntestiCult™ Organoid Growth Medium (Mouse) - ReferenceF. Mammoli et al. (sep 2019) Experimental cell research 382 1 111445
Physiological expression of miR-130a during differentiation of CD34+ human hematopoietic stem cells results in the inhibition of monocyte differentiation.
MicroRNAs (miRNA) are small noncoding RNAs that regulate gene expression by targeting mRNAs in a sequence specific manner, thereby determining their degradation or inhibiting translation. They are involved in processes such as proliferation, differentiation and apoptosis by fine-tuning the expression of genes underlying such events. The expression of specific miRNAs is involved in hematopoietic differentiation and their deregulation contributes to the development of hematopoietic malignancies such as acute myeloid leukemia (AML). miR-130a is over-expressed in AML. Here we show that miR-130a is physiologically expressed in myeloblasts and down-regulated during monocyte differentiation. Gain- and loss-of-function experiments performed on CD34+ human hematopoietic stem cells confirmed that expression of miR-130a inhibits monocyte differentiation by interfering with the expression of key transcription factors HOXA10, IRF8, KLF4, MAFB and PU-1. The data obtained in this study highlight that the correct modulation of miR-130a is necessary for normal differentiation to occur and confirming that deregulation of this miRNA might underlie the differentiation block occurring in AML. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse) - ReferenceA. Ly et al. (nov 2019) Cell reports 29 8 2257--2269.e6
Transcription Factor T-bet in B Cells Modulates Germinal Center Polarization and Antibody Affinity Maturation in Response to Malaria.
Despite the key role that antibodies play in protection, the cellular processes mediating the acquisition of humoral immunity against malaria are not fully understood. Using an infection model of severe malaria, we find that germinal center (GC) B cells upregulate the transcription factor T-bet during infection. Molecular and cellular analyses reveal that T-bet in B cells is required not only for IgG2c switching but also favors commitment of B cells to the dark zone of the GC. T-bet was found to regulate the expression of Rgs13 and CXCR3, both of which contribute to the impaired GC polarization observed in the absence of T-bet, resulting in reduced IghV gene mutations and lower antibody avidity. These results demonstrate that T-bet modulates GC dynamics, thereby promoting the differentiation of B cells with increased affinity for antigen. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse) - ReferenceL. Luu et al. ( 2019) Frontiers in cellular and infection microbiology 9 300
An Open-Format Enteroid Culture System for Interrogation of Interactions Between Toxoplasma gondii and the Intestinal Epithelium.
When transmitted through the oral route, Toxoplasma gondii first interacts with its host at the small intestinal epithelium. This interaction is crucial to controlling initial invasion and replication, as well as shaping the quality of the systemic immune response. It is therefore an attractive target for the design of novel vaccines and adjuvants. However, due to a lack of tractable infection models, we understand surprisingly little about the molecular pathways that govern this interaction. The in vitro culture of small intestinal epithelium as 3D enteroids shows great promise for modeling the epithelial response to infection. However, the enclosed luminal space makes the application of infectious agents to the apical epithelial surface challenging. Here, we have developed three novel enteroid-based techniques for modeling T. gondii infection. In particular, we have adapted enteroid culture protocols to generate collagen-supported epithelial sheets with an exposed apical surface. These cultures retain epithelial polarization, and the presence of fully differentiated epithelial cell populations. They are susceptible to infection with, and support replication of, T. gondii. Using quantitative label-free mass spectrometry, we show that T. gondii infection of the enteroid epithelium is associated with up-regulation of proteins associated with cholesterol metabolism, extracellular exosomes, intermicrovillar adhesion, and cell junctions. Inhibition of host cholesterol and isoprenoid biosynthesis with Atorvastatin resulted in a reduction in parasite load only at higher doses, indicating that de novo synthesis may support, but is not required for, parasite replication. These novel models therefore offer tractable tools for investigating how interactions between T. gondii and the host intestinal epithelium influence the course of infection. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse) - ReferenceR. Lu et al. (nov 2019) FASEB journal : official publication of the Federation of American Societies for Experimental Biology 33 11 11845--11856
Imbalance of autophagy and apoptosis in intestinal epithelium lacking the vitamin D receptor.
Apoptosis and autophagy are dynamic processes that determine the fate of cells. Vitamin D receptor (VDR) deficiency in the intestine leads to abnormal Paneth cells and impaired autophagy function. Here, we will elucidate the mechanisms of the intestinal epithelial VDR regulation of autophagy and apoptosis. We used in vivo VDRlox and VDR∆IEC mice and ex vivo organoids generated from small intestine and colon tissues. We found that VDR deficiency induced more apoptotic cells and significantly increased cell death in the small intestine and colon of VDR∆IEC mice. The proapoptotic protein B-cell lymphoma 2 (BCL-2) associated X protein (Bax) was enhanced, whereas autophagy related 16 like 1 (ATG16L1) and Beclin-1 were decreased in the intestines of VDR$\Delta$IEC mice. Apoptosis induced by Bax reduced autophagy by decreasing Beclin-1. Physical interactions between Beclin-1 and Bcl-2 were increased in the VDR-deficient epithelia from mice. The growth of VDR∆IEC organoids was significantly slower with fewer Paneth cells than that of VDR+/+ organoids. The expression levels of Beclin-1 and lysozyme were decreased in VDR∆IEC organoids. Bacterial endotoxin levels were high in the serum from VDR∆IEC mice and made mice susceptible to colitis. In the organoids and colitis IL-10-/- mice, vitamin D3 treatment increased VDR and ATG16L1 protein expression levels, which activated autophagic responses. In summary, intestinal epithelial VDR regulates autophagy and apoptosis through ATG16L1 and Beclin-1. Our studies provide fundamental insights into the tissue-specific function of VDR in modulating the balance between autophagy and apoptosis.-Lu, R., Zhang, Y.-G., Xia, Y., Sun, J. Imbalance of autophagy and apoptosis in intestinal epithelium lacking the vitamin D receptor. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse) - ReferenceG. Lou et al. (jan 2020) Journal of experimental {\&} clinical cancer research : CR 39 1 4
MiR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway.
BACKGROUND MiR-199a-3p (miR-199a) can enhance the chemosensitivity of hepatocellular carcinoma (HCC). Because of the easy degradation of miRNA by direct infusion, effective vehicle-mediated delivery of miR-199a may represent a new strategy for improving HCC chemotherapy. Considering mesenchymal stem cell (MSC)-derived exosomes as promising natural nanovectors for drug and molecule delivery, we aimed to determine whether exosomes from adipose tissue-derived MSCs (AMSCs) could be used to deliver miR-199a and improve HCC chemosensitivity. METHODS MiR-199a-modified AMSCs (AMSC-199a) were constructed by miR-199a lentivirus infection and puromycin selection. MiR-199-modified exosomes (AMSC-Exo-199a) were isolated from the supernatant of AMSC-199a and were assessed by transmission electron microscopy, nanoparticle tracking analysis, and flow cytometry analysis. The expression levels of miR-199a in HCC samples, AMSCs, exosomes, and HCC cells were quantified by real-time PCR. The effects of AMSC-Exo-199a on HCC chemosensitivity were determined by cell proliferation and apoptosis assays and by i.v. injection into orthotopic HCC mouse models with doxorubicin treatment. MTOR, p-4EBP1 and p-70S6K levels in HCC cells and tissues were quantified by Western blot. RESULTS AMSC-Exo-199a had the classic characteristics of exosomes and could effectively mediate miR-199a delivery to HCC cells. Additionally, AMSC-Exo-199a significantly sensitized HCC cells to doxorubicin by targeting mTOR and subsequently inhibiting the mTOR pathway. Moreover, i.v.-injected AMSC-Exo-199a could distribute to tumor tissue and markedly increased the effect of Dox against HCC in vivo. CONCLUSIONS AMSC-Exo-199a can be an effective vehicle for miR-199a delivery, and they effectively sensitized HCC to chemotherapeutic agents by targeting mTOR pathway. AMSC-Exo-199a administration may provide a new strategy for improving HCC chemosensitivity. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse) - ReferenceF. Lopes et al. ( 2018) The Journal of biological chemistry 293 9 3073--3087
ER-stress mobilization of death-associated protein kinase-1-dependent xenophagy counteracts mitochondria stress-induced epithelial barrier dysfunction.
The gut microbiome contributes to inflammatory bowel disease (IBD), in which bacteria can be present within the epithelium. Epithelial barrier function is decreased in IBD, and dysfunctional epithelial mitochondria and endoplasmic reticulum (ER) stress have been individually associated with IBD. We therefore hypothesized that the combination of ER and mitochondrial stresses significantly disrupt epithelial barrier function. Here, we treated human colonic biopsies, epithelial colonoids, and epithelial cells with an uncoupler of oxidative phosphorylation, dinitrophenol (DNP), with or without the ER stressor tunicamycin and assessed epithelial barrier function by monitoring internalization and translocation of commensal bacteria. We also examined barrier function and colitis in mice exposed to dextran sodium sulfate (DSS) or DNP and co-treated with DAPK6, an inhibitor of death-associated protein kinase 1 (DAPK1). Contrary to our hypothesis, induction of ER stress (i.e. the unfolded protein response) protected against decreased barrier function caused by the disruption of mitochondrial function. ER stress did not prevent DNP-driven uptake of bacteria; rather, specific mobilization of the ATF6 arm of ER stress and recruitment of DAPK1 resulted in enhanced autophagic killing (xenophagy) of bacteria. Of note, epithelia with a Crohn's disease-susceptibility mutation in the autophagy gene ATG16L1 exhibited less xenophagy. Systemic delivery of the DAPK1 inhibitor DAPK6 increased bacterial translocation in DSS- or DNP-treated mice. We conclude that promoting ER stress-ATF6-DAPK1 signaling in transporting enterocytes counters the transcellular passage of bacteria evoked by dysfunctional mitochondria, thereby reducing the potential for metabolic stress to reactivate or perpetuate inflammation. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse) - ReferenceR. Liu et al. ( 2019) Frontiers in immunology 10 2284
Loss of TIPE2 Has Opposing Effects on the Pathogenesis of Autoimmune Diseases.
Autoimmune diseases are a physiological state wherein immune responses are directed against and damage the body's own tissues. Cytokines secreted by infiltrated inflammatory cells contribute to the pathogenesis of autoimmune diseases. TIPE2, one of the four family members of Tumor necrosis factor-$\alpha$ induced protein-8 (TNFAIP8), is a negative regulator of innate and adaptive immunity and plays essential roles in the maintenance of immune tolerance. However, studies on the role of TIPE2 during the development of autoimmune diseases have generated contradictory results. In the current study, we sought to determine the role of TIPE2 during the development of IMQ-induced psoriasis and Experimental Autoimmune Uveitis (EAU) in mice. Our study revealed that, while TIPE2-deficiency alleviates psoriasis, it exacerbates the development of EAU. Further studies demonstrated that, although TIPE2-deficient T cells produced more IL-17A, they do not migrate efficiently to the local inflammatory site, i.e., the skin. This in turn led to the decreased IL-17A production in the skin and consequently reduced the severity of psoriasis in TIPE2-deficient mice. However, although TIPE2-deficient T cells still produced more IL-17A in EAU model, they migrate into the inflamed eye as efficient as TIPE2-sufficient T cells, and consequently exacerbates the development of EAU in TIPE2-deficient mice. Taken together, these results indicate that TIPE2 may either promote or suppress autoimmunity depending on the specific inflammatory microenvironment in different types of autoimmune diseases. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse) - ReferenceM. Liu et al. (nov 2019) Leukemia research 86 106225
Treatment of human T-cell acute lymphoblastic leukemia cells with CFTR inhibitor CFTRinh-172.
Our previous studies have demonstrated that a previously unrecognized role of CFTR in hematopoiesis and acute leukemia. Here, we show that CFTR inhibitor CFTR-inh172 possesses ability to inhibit human T-cell acute lymphoblastic leukemia cells. In detail, CFTR-inh172 inhibited cell proliferation, promoted apoptosis and arrested the cell cycle in human T-cell acute lymphoblastic leukemia cell CCRF-CEM, JURKAT and MOLT-4. Furthermore, transcriptome analysis reveals that CFTR-inh172 induces significant alteration of gene expression related to apoptosis and proliferation. These findings demonstrate the potential of CFTR inhibitor CFTR-inh172 in human T-cell acute lymphoblastic leukemia treatment. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse) - ReferenceL. C. Lindesmith et al. ( 2019) Immunity 50 6 1530--1541.e8
Sera Antibody Repertoire Analyses Reveal Mechanisms of Broad and Pandemic Strain Neutralizing Responses after Human Norovirus Vaccination.
Rapidly evolving RNA viruses, such as the GII.4 strain of human norovirus (HuNoV), and their vaccines elicit complex serological responses associated with previous exposure. Specific correlates of protection, moreover, remain poorly understood. Here, we report the GII.4-serological antibody repertoire-pre- and post-vaccination-and select several antibody clonotypes for epitope and structural analysis. The humoral response was dominated by GII.4-specific antibodies that blocked ancestral strains or by antibodies that bound to divergent genotypes and did not block viral-entry-ligand interactions. However, one antibody, A1431, showed broad blockade toward tested GII.4 strains and neutralized the pandemic GII.P16-GII.4 Sydney strain. Structural mapping revealed conserved epitopes, which were occluded on the virion or partially exposed, allowing for broad blockade with neutralizing activity. Overall, our results provide high-resolution molecular information on humoral immune responses after HuNoV vaccination and demonstrate that infection-derived and vaccine-elicited antibodies can exhibit broad blockade and neutralization against this prevalent human pathogen. View PublicationCatalog #: Product Name: 06005 IntestiCult™ Organoid Growth Medium (Mouse) Catalog #: 06005 Product Name: IntestiCult™ Organoid Growth Medium (Mouse)
Products 13 to 24 of 103 total
Shop By
Filter Results
- Resource Type
-
- Product Information Sheet 1 item
- Reference 95 items
- Safety Data Sheet 1 item
- Area of Interest
-
- Epithelial Cell Biology 16 items
- Brand
-
- EasySep 11 items
- IntestiCult 75 items
- MesenCult 7 items
- RoboSep 1 item
- RosetteSep 1 item
- SepMate 1 item
- Cell Type
-
- Epithelial Cells 13 items