You searched for: 05704
-
ReferenceLi J-M et al. (FEB 2007) Molecular endocrinology (Baltimore, Md.) 21 2 499--511
Angiotensin II-induced neural differentiation via angiotensin II type 2 (AT2) receptor-MMS2 cascade involving interaction between AT2 receptor-interacting protein and Src homology 2 domain-containing protein-tyrosine phosphatase 1.
Angiotensin II (Ang II) type 2 (AT2) receptors are abundantly expressed not only in the fetal brain where they probably contribute to brain development, but also in pathological conditions to protect the brain against stroke; however, the detailed mechanisms are unclear. Here, we demonstrated that AT2 receptor signaling induced neural differentiation via an increase in MMS2, one of the ubiquitin-conjugating enzyme variants. The AT2 receptor, MMS2, Src homology 2 domain-containing protein-tyrosine phosphatase 1 (SHP-1), and newly cloned AT2 receptor-interacting protein (ATIP) were highly expressed in fetal rat neurons and declined after birth. Ang II induced MMS2 expression in a dose-dependent manner, reaching a peak after 4 h of stimulation, and this effect was enhanced with AT1 receptor blocker, valsartan, but inhibited by AT2 receptor blocker PD123319. Moreover, we observed that an AT2 receptor agonist, CGP42112A, alone enhanced MMS2 expression. Neurons treated with small interfering RNA of MMS2 failed to exhibit neurite outgrowth and synapse formation. Moreover, the increase in AT2 receptor-induced MMS2 mRNA expression was enhanced by overexpression of ATIP but inhibited by small interfering RNA of SHP-1 and overexpression of catalytically dominant-negative SHP-1 or a tyrosine phosphatase inhibitor, sodium orthovanadate. After AT2 receptor stimulation, ATIP and SHP-1 were translocated into the nucleus after formation of their complex. Furthermore, increased MMS2 expression mediates the inhibitor of DNA binding 1 proteolysis and promotes DNA repair. These results provide a new insight into the contribution of AT2 receptor stimulation to neural differentiation via transactivation of MMS2 expression involving the association of ATIP and SHP-1. View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05703NeuroCult™ Differentiation Supplement (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat) -
ReferenceGrenier G et al. (DEC 2007) Stem cells (Dayton, Ohio) 25 12 3101--10
Resident endothelial precursors in muscle, adipose, and dermis contribute to postnatal vasculogenesis.
A novel population of tissue-resident endothelial precursors (TEPs) was isolated from small blood vessels in dermal, adipose, and skeletal muscle of mouse based on their ability to be grown as spheres. Cellular and molecular analyses of these cells revealed that they were highly related regardless of the tissue of origin and distinct from embryonic neural stem cells. Notably, TEPs did not express hematopoietic markers, but they expressed numerous characteristics of angiogenic precursors and their differentiated progeny, such as CD34, Flk-1, Tie-1, CD31, and vascular endothelial cadherin (VE-cadherin). TEPs readily differentiated into endothelial cells in newly formed vascular networks following transplantation into regenerating skeletal muscle. Taken together, these experiments suggest that TEPs represent a novel class of endothelial precursors that are closely associated with small blood vessels in muscle, adipose, and dermal tissue. This finding is of particular interest since it could bring new insight in cancer angiogenesis and collateral blood vessels developed following ischemia. Disclosure of potential conflicts of interest is found at the end of this article. View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05703NeuroCult™ Differentiation Supplement (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat) -
ReferenceHarris MA et al. (DEC 2008) Cancer research 68 24 10051--9
Cancer stem cells are enriched in the side population cells in a mouse model of glioma.
The recent identification of cancer stem cells (CSCs) in multiple human cancers provides a new inroad to understanding tumorigenesis at the cellular level. CSCs are defined by their characteristics of self-renewal, multipotentiality, and tumor initiation upon transplantation. By testing for these defining characteristics, we provide evidence for the existence of CSCs in a transgenic mouse model of glioma, S100beta-verbB;Trp53. In this glioma model, CSCs are enriched in the side population (SP) cells. These SP cells have enhanced tumor-initiating capacity, self-renewal, and multipotentiality compared with non-SP cells from the same tumors. Furthermore, gene expression analysis comparing fluorescence-activated cell sorting-sorted cancer SP cells to non-SP cancer cells and normal neural SP cells identified 45 candidate genes that are differentially expressed in glioma stem cells. We validated the expression of two genes from this list (S100a4 and S100a6) in primary mouse gliomas and human glioma samples. Analyses of xenografted human glioblastoma multiforme cell lines and primary human glioma tissues show that S100A4 and S100A6 are expressed in a small subset of cancer cells and that their abundance is positively correlated to tumor grade. In conclusion, this study shows that CSCs exist in a mouse glioma model, suggesting that this model can be used to study the molecular and cellular characteristics of CSCs in vivo and to further test the CSC hypothesis. View PublicationCatalog #:Product Name:05703NeuroCult™ Differentiation Supplement (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat) -
ReferenceMa S et al. (JAN 2017) Molecular and Cellular Biology MCB.00492--16
L2hgdh deficiency accumulates L-2-hydroxyglutarate with progressive leukoencephalopathy and neurodegeneration
L-2-hydroxyglutarate aciduria (L-2-HGA) is an autosomal recessive neurometabolic disorder caused by a mutation in the L-2-hydroxyglutarate dehydrogenase ( L2HGDH ) gene. In this study, we generated L2hgdh knockout (KO) mice and observed a robust increase of 2-hydroxyglutarate (L-2-HG) levels in multiple tissues. The highest levels of L-2-HG were observed in the brain and testis with a corresponding increase in histone methylation in these tissues. L2hgdh KO mice exhibit white matter abnormalities, extensive gliosis, microglia-mediated neuroinflammation, and an expansion of oligodendrocyte progenitor cells (OPCs). Moreover, L2hgdh deficiency leads to impaired adult hippocampal neurogenesis and late-onset neurodegeneration in mouse brains. Our data provide in vivo evidence that L2hgdh mutation leads to L-2-HG accumulation, leukoencephalopathy, and neurodegeneration in mice, thus offering new insights into the pathophysiology of L-2-HGA in humans. View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05703NeuroCult™ Differentiation Supplement (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat) -
ReferenceLi Z-H et al. (MAR 2014) PLoS ONE 9 3 e91260
Nardosinone Improves the Proliferation, Migration and Selective Differentiation of Mouse Embryonic Neural Stem Cells
In this study, we investigated the impact of Nardosinone, a bioactive component in Nardostachys root, on the proliferation and differentiation of neural stem cells. The neural stem cells were isolated from cerebrums of embryonic day 14 CD1 mice. The proliferation of cells was monitored using the cell counting kit-8 assay, bromodeoxyuridine incorporation and cell cycle analysis. Cell migration and differentiation were investigated with the neurosphere assay and cell specific markers, respectively. The results showed that Nardosinone promotes cells proliferation and increases cells migration distance in a dose-dependent manner. Nardosinone also induces the selective differentiation of neural stem cells to neurons and oligodendrocytes, as indicated by the expression of microtubule-associated protein-2 and myelin basic protein, respectively. Nardosinone also increases the expression of phospho-extracellular signal-regulated kinase and phospho-cAMP response element binding protein during proliferation and differentiation. In conclusion, this study reveals the regulatory effects of Nardosinone on neural stem cells, which may have significant implications for the treatment of brain injury and neurodegenerative diseases. View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05702NeuroCult™ Proliferation Kit (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat) -
ReferencePark M et al. (SEP 2016) Scientific reports 6 34111
Exercise protects against methamphetamine-induced aberrant neurogenesis.
While no effective therapy is available for the treatment of methamphetamine (METH)-induced neurotoxicity, aerobic exercise is being proposed to improve depressive symptoms and substance abuse outcomes. The present study focuses on the effect of exercise on METH-induced aberrant neurogenesis in the hippocampal dentate gyrus in the context of the blood-brain barrier (BBB) pathology. Mice were administered with METH or saline by i.p. injections for 5 days with an escalating dose regimen. One set of mice was sacrificed 24 h post last injection of METH, and the remaining animals were either subjected to voluntary wheel running (exercised mice) or remained in sedentary housing (sedentary mice). METH administration decreased expression of tight junction (TJ) proteins and increased BBB permeability in the hippocampus. These changes were preserved post METH administration in sedentary mice and were associated with the development of significant aberrations of neural differentiation. Exercise protected against these effects by enhancing the protein expression of TJ proteins, stabilizing the BBB integrity, and enhancing the neural differentiation. In addition, exercise protected against METH-induced systemic increase in inflammatory cytokine levels. These results suggest that exercise can attenuate METH-induced neurotoxicity by protecting against the BBB disruption and related microenvironmental changes in the hippocampus. View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat) -
ReferenceTeratani-Ota Y et al. (OCT 2016) In vitro cellular & developmental biology. Animal 52 9 961--973
Induction of specific neuron types by overexpression of single transcription factors.
Specific neuronal types derived from embryonic stem cells (ESCs) can facilitate mechanistic studies and potentially aid in regenerative medicine. Existing induction methods, however, mostly rely on the effects of the combined action of multiple added growth factors, which generally tend to result in mixed populations of neurons. Here, we report that overexpression of specific transcription factors (TFs) in ESCs can rather guide the differentiation of ESCs towards specific neuron lineages. Analysis of data on gene expression changes 2 d after induction of each of 185 TFs implicated candidate TFs for further ESC differentiation studies. Induction of 23 TFs (out of 49 TFs tested) for 6 d facilitated neural differentiation of ESCs as inferred from increased proportion of cells with neural progenitor marker PSA-NCAM. We identified early activation of the Notch signaling pathway as a common feature of most potent inducers of neural differentiation. The majority of neuron-like cells generated by induction of Ascl1, Smad7, Nr2f1, Dlx2, Dlx4, Nr2f2, Barhl2, and Lhx1 were GABA-positive and expressed other markers of GABAergic neurons. In the same way, we identified Lmx1a and Nr4a2 as inducers for neurons bearing dopaminergic markers and Isl1, Fezf2, and St18 for cholinergic motor neurons. A time-course experiment with induction of Ascl1 showed early upregulation of most neural-specific messenger RNA (mRNA) and microRNAs (miRNAs). Sets of Ascl1-induced mRNAs and miRNAs were enriched in Ascl1 targets. In further studies, enrichment of cells obtained with the induction of Ascl1, Smad7, and Nr2f1 using microbeads resulted in essentially pure population of neuron-like cells with expression profiles similar to neural tissues and expressed markers of GABAergic neurons. In summary, this study indicates that induction of transcription factors is a promising approach to generate cultures that show the transcription profiles characteristic of specific neural cell types. View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat) -
ReferenceYamamizu K et al. (DEC 2013) Stem Cell Reports 1 6 545--559
Identification of Transcription Factors for Lineage-Specific ESC Differentiation
A network of transcription factors (TFs) determines cell identity, but identity can be altered by overexpressing a combination of TFs. However, choosing and verifying combinations of TFs for specific cell differentiation have been daunting due to the large number of possible combinations of 2,000 TFs. Here, we report the identification of individual TFs for lineage-specific cell differentiation based on the correlation matrix of global gene expression profiles. The overexpression of identified TFs-Myod1, Mef2c, Esx1, Foxa1, Hnf4a, Gata2, Gata3, Myc, Elf5, Irf2, Elf1, Sfpi1, Ets1, Smad7, Nr2f1, Sox11, Dmrt1, Sox9, Foxg1, Sox2, or Ascl1-can direct efficient, specific, and rapid differentiation into myocytes, hepatocytes, blood cells, and neurons. Furthermore, transfection of synthetic mRNAs of TFs generates their appropriate target cells. These results demonstrate both the utility of this approach to identify potent TFs for cell differentiation, and the unanticipated capacity of single TFs directly guides differentiation to specific lineage fates. View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat) -
ReferenceYamamizu K et al. (MAY 2016) Scientific reports 6 1 25667
Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines.
Mouse embryonic stem cells (ESCs) can differentiate into a wide range - and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this NIA Mouse ESC Bank we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs. View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05703NeuroCult™ Differentiation Supplement (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat) -
ReferenceBiasini E et al. (FEB 2013) Journal of Neuroscience 33 6 2408--2418
A Mutant Prion Protein Sensitizes Neurons to Glutamate-Induced Excitotoxicity
Growing evidence suggests that a physiological activity of the cellular prion protein (PrP(C)) plays a crucial role in several neurodegenerative disorders, including prion and Alzheimer's diseases. However, how the functional activity of PrP(C) is subverted to deliver neurotoxic signals remains uncertain. Transgenic (Tg) mice expressing PrP with a deletion of residues 105-125 in the central region (referred to as ΔCR PrP) provide important insights into this problem. Tg(ΔCR) mice exhibit neonatal lethality and massive degeneration of cerebellar granule neurons, a phenotype that is dose dependently suppressed by the presence of wild-type PrP. When expressed in cultured cells, ΔCR PrP induces large, ionic currents that can be detected by patch-clamping techniques. Here, we tested the hypothesis that abnormal ion channel activity underlies the neuronal death seen in Tg(ΔCR) mice. We find that ΔCR PrP induces abnormal ionic currents in neurons in culture and in cerebellar slices and that this activity sensitizes the neurons to glutamate-induced, calcium-mediated death. In combination with ultrastructural and biochemical analyses, these results demonstrate a role for glutamate-induced excitotoxicity in PrP-mediated neurodegeneration. A similar mechanism may operate in other neurodegenerative disorders attributable to toxic, β-rich oligomers that bind to PrP(C). View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05702NeuroCult™ Proliferation Kit (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat) -
ReferenceZhou Q et al. (FEB 2016) Molecular biology of the cell 27 4 627--39
Inhibition of the histone demethylase Kdm5b promotes neurogenesis and derepresses Reln (reelin) in neural stem cells from the adult subventricular zone of mice.
The role of epigenetic regulators in the control of adult neurogenesis is largely undefined. We show that the histone demethylase enzyme Kdm5b (Jarid1b) negatively regulates neurogenesis from adult subventricular zone (SVZ) neural stem cells (NSCs) in culture. shRNA-mediated depletion of Kdm5b in proliferating adult NSCs decreased proliferation rates and reduced neurosphere formation in culture. When transferred to differentiation culture conditions, Kdm5b-depleted adult NSCs migrated from neurospheres with increased velocity. Whole-genome expression screening revealed widespread transcriptional changes with Kdm5b depletion, notably the up-regulation of reelin (Reln), the inhibition of steroid biosynthetic pathway component genes and the activation of genes with intracellular transport functions in cultured adult NSCs. Kdm5b depletion increased extracellular reelin concentration in the culture medium and increased phosphorylation of the downstream reelin signaling target Disabled-1 (Dab1). Sequestration of extracellular reelin with CR-50 reelin-blocking antibodies suppressed the increase in migratory velocity of Kdm5b-depleted adult NSCs. Chromatin immunoprecipitation revealed that Kdm5b is present at the proximal promoter of Reln, and H3K4me3 methylation was increased at this locus with Kdm5b depletion in differentiating adult NSCs. Combined the data suggest Kdm5b negatively regulates neurogenesis and represses Reln in neural stem cells from the adult SVZ. View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05701NeuroCult™ Proliferation Supplement (Mouse & Rat)05702NeuroCult™ Proliferation Kit (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat) -
ReferenceHotta R et al. (MAY 2016) Biomaterials 88 1--11
Delivery of enteric neural progenitors with 5-HT4 agonist-loaded nanoparticles and thermosensitive hydrogel enhances cell proliferation and differentiation following transplantation in vivo.
Cell therapy offers an innovative approach for treating enteric neuropathies. Postnatal gut-derived enteric neural stem/progenitor cells (ENSCs) represent a potential autologous source, but have a limited capacity for proliferation and neuronal differentiation. Since serotonin (5-HT) promotes enteric neuronal growth during embryonic development, we hypothesized that serotonin receptor agonism would augment growth of neurons from transplanted ENSCs. Postnatal ENSCs were isolated from 2 to 4 week-old mouse colon and cultured with 5-HT4 receptor agonist (RS67506)-loaded liposomal nanoparticles. ENSCs were co-cultured with mouse colon explants in the presence of RS67506-loaded (n = 3) or empty nanoparticles (n = 3). ENSCs were also transplanted into mouse rectum in vivo with RS67506-loaded (n = 8) or blank nanoparticles (n = 4) confined in a thermosensitive hydrogel, Pluronic F-127. Neuronal density and proliferation were analyzed immunohistochemically. Cultured ENSCs gave rise to significantly more neurons in the presence of RS67506-loaded nanoparticles. Similarly, colon explants had significantly increased neuronal density when RS67506-loaded nanoparticles were present. Finally, following in vivo cell delivery, co-transplantation of ENSCs with 5-HT4 receptor agonist-loaded nanoparticles led to significantly increased neuronal density and proliferation. We conclude that optimization of postnatal ENSCs can support their use in cell-based therapies for neurointestinal diseases. View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05701NeuroCult™ Proliferation Supplement (Mouse & Rat)05702NeuroCult™ Proliferation Kit (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat) -
ReferenceKucia M et al. (JUL 2005) Leukemia 19 7 1118--27
Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells.
Evidence is presented that bone marrow (BM) in addition to CD45(positive) hematopoietic stem cells contains a rare population of heterogenous CD45(negative) nonhematopoietic tissue committed stem cells (TCSC). These nonhematopoietic TCSC (i) are enriched in population of CXCR4(+) CD34(+) AC133(+) lin(-) CD45(-) and CXCR4(+) Sca-1(+) lin(-) CD45(-) in humans and mice, respectively, (ii) display several markers of pluripotent stem cells (PSC) and (iii) as we envision are deposited in BM early in development. Thus, since BM contains versatile nonhematopoietic stem cells, previous studies on plasticity trans-dedifferentiation of BM-derived hematopoietic stem cells (HSC) that did not include proper controls to exclude this possibility could lead to wrong interpretations. Therefore, in this spotlight review we present this alternative explanation of 'plasticity' of BM-derived stem cells based on the assumption that BM stem cells are heterogenous. We also discuss a potential relationship of TCSC/PSC identified by us with other BM-derived CD45(negative) nonhematopoietic stem cells that were recently identified by other investigators (eg MSC, MAPC, USSC and MIAMI cells). Finally, we discuss perspectives and pitfalls in potential application of these cells in regenerative medicine. View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05701NeuroCult™ Proliferation Supplement (Mouse & Rat)05702NeuroCult™ Proliferation Kit (Mouse & Rat)05703NeuroCult™ Differentiation Supplement (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat) -
ReferenceFernando P et al. (OCT 2005) FASEB journal : official publication of the Federation of American Societies for Experimental Biology 19 12 1671--3
Neural stem cell differentiation is dependent upon endogenous caspase 3 activity.
Caspase proteases have become the focal point for the development and application of anti-apoptotic therapies in a variety of central nervous system diseases. However, this approach is based on the premise that caspase function is limited to invoking cell death signals. Here, we show that caspase-3 activity is elevated in nonapoptotic differentiating neuronal cell populations. Moreover, peptide inhibition of protease activity effectively inhibits the differentiation process in a cultured neurosphere model. These results implicate caspase-3 activation as a conserved feature of neuronal differentiation and suggest that targeted inhibition of this protease in neural cell populations may have unintended consequences. View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05701NeuroCult™ Proliferation Supplement (Mouse & Rat)05702NeuroCult™ Proliferation Kit (Mouse & Rat)05703NeuroCult™ Differentiation Supplement (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat) -
ReferenceKucia M et al. (JAN 2006) Leukemia 20 1 18--28
Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke.
The concept that bone marrow (BM)-derived cells participate in neural regeneration remains highly controversial and the identity of the specific cell type(s) involved remains unknown. We recently reported that the BM contains a highly mobile population of CXCR4+ cells that express mRNA for various markers of early tissue-committed stem cells (TCSCs), including neural TCSCs. Here, we report that these cells not only express neural lineage markers (beta-III-tubulin, Nestin, NeuN, and GFAP), but more importantly form neurospheres in vitro. These neural TCSCs are present in significant amounts in BM harvested from young mice but their abundance and responsiveness to gradients of motomorphogens, such as SDF-1, HGF, and LIF, decreases with age. FACS analysis, combined with analysis of neural markers at the mRNA and protein levels, revealed that these cells reside in the nonhematopoietic CXCR4+/Sca-1+/lin-/CD45 BM mononuclear cell fraction. Neural TCSCs are mobilized into the peripheral-blood following stroke and chemoattracted to the damaged neural tissue in an SDF-1-CXCR4-, HGF-c-Met-, and LIF-LIF-R-dependent manner. Based on these data, we hypothesize that the postnatal BM harbors a nonhematopoietic population of cells that express markers of neural TCSCs that may account for the beneficial effects of BM-derived cells in neural regeneration. View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05701NeuroCult™ Proliferation Supplement (Mouse & Rat)05702NeuroCult™ Proliferation Kit (Mouse & Rat)05703NeuroCult™ Differentiation Supplement (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat) -
ReferenceUdagawa J et al. (FEB 2006) Endocrinology 147 2 647--58
The role of leptin in the development of the cerebral cortex in mouse embryos.
Leptin is detected in the sera, and leptin receptors are expressed in the cerebrum of mouse embryos, suggesting that leptin plays a role in cerebral development. Compared with the wild type, leptin-deficient (ob/ob) mice had fewer cells at embryonic day (E) 16 and E18 and had fewer 5-bromo-2'-deoxyuridine(+) cells at E14 and E16 in the neuroepithelium. Intracerebroventricular leptin injection in E14 ob/ob embryos increased the number of neuroepithelium cells at E16. In cultured neurosphere cells, leptin treatment increased Hes1 mRNA expression and maintained neural progenitors. Astrocyte differentiation was induced by low-dose (0.1 microg/ml) but not high-dose (1 microg/ml) leptin. High-dose leptin decreased Id mRNA and increased Ngn1 mRNA in neurosphere cells. The neuropeptide Y mRNA level in the cortical plate was lower in ob/ob than the wild type at E16 and E18. These results suggest that leptin maintains neural progenitors and is related to glial and neuronal development in embryos. View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05701NeuroCult™ Proliferation Supplement (Mouse & Rat)05702NeuroCult™ Proliferation Kit (Mouse & Rat)05703NeuroCult™ Differentiation Supplement (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat) -
ReferenceMizutani E et al. (DEC 2006) Reproduction (Cambridge, England) 132 6 849--57
Developmental ability of cloned embryos from neural stem cells.
The success rate is generally higher when cloning mice from embryonic stem (ES) cell nuclei than from somatic cell nuclei, suggesting that the embryonic nature or the undifferentiated state of the donor cell increases cloning efficiency. We assessed the developmental ability of cloned embryos derived from cultured neural stem cell (NSC) nuclei and compared the success rate with that of embryos cloned from other donor cells such as differentiated NSCs, cumulus cells, Sertoli cells and ES cells in the mouse. The transfer of two-cell cloned embryos derived from cultured NSC nuclei into surrogate mothers produced five live cloned mice. However, the success rate (0.5%) was higher in embryos cloned from cultured NSC nuclei than from differentiated NSCs (0%), but lower than that obtained by cloning mice from other cell nuclei (2.2-3.5%). Although the in vitro developmental potential to the two-cell stage of the cloned embryos derived from NSC nuclei (73%) was similar to that of the cloned embryos derived from other somatic cell nuclei (e.g., 85% in Sertoli cells and 75% in cumulus cells), the developmental rate to the morula-blastocyst stage was only 7%. This rate is remarkably lower than that produced from other somatic cells (e.g., 50% in Sertoli cells and 54% in cumulus cells). These results indicate that the undifferentiated state of neural cells does not enhance the cloning efficiency in mice and that the arrest point for in vitro development of cloned embryos depends on the donor cell type. View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05701NeuroCult™ Proliferation Supplement (Mouse & Rat)05702NeuroCult™ Proliferation Kit (Mouse & Rat)05703NeuroCult™ Differentiation Supplement (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat) -
ReferenceYang Z-J et al. (AUG 2008) Cancer cell 14 2 135--45
Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells.
Medulloblastoma is the most common malignant brain tumor in children, but the cells from which it arises remain unclear. Here we examine the origin of medulloblastoma resulting from mutations in the Sonic hedgehog (Shh) pathway. We show that activation of Shh signaling in neuronal progenitors causes medulloblastoma by 3 months of age. Shh pathway activation in stem cells promotes stem cell proliferation but only causes tumors after commitment to-and expansion of-the neuronal lineage. Notably, tumors initiated in stem cells develop more rapidly than those initiated in progenitors, with all animals succumbing by 3-4 weeks. These studies suggest that medulloblastoma can be initiated in progenitors or stem cells but that Shh-induced tumorigenesis is associated with neuronal lineage commitment. View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05701NeuroCult™ Proliferation Supplement (Mouse & Rat)05702NeuroCult™ Proliferation Kit (Mouse & Rat)05703NeuroCult™ Differentiation Supplement (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat) -
ReferenceMazur-Kolecka B et al. (MAY 2012) Journal of neuroscience research 90 5 999--1010
Effect of DYRK1A activity inhibition on development of neuronal progenitors isolated from Ts65Dn mice.
Overexpression of dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A), encoded by a gene located in the Down syndrome (DS) critical region, is considered a major contributor to developmental abnormalities in DS. DYRK1A regulates numerous genes involved in neuronal commitment, differentiation, maturation, and apoptosis. Because alterations of neurogenesis could lead to impaired brain development and mental retardation in individuals with DS, pharmacological normalization of DYRK1A activity has been postulated as DS therapy. We tested the effect of harmine, a specific DYRK1A inhibitor, on the development of neuronal progenitor cells (NPCs) isolated from the periventricular zone of newborn mice with segmental trisomy 16 (Ts65Dn mice), a mouse model for DS that overexpresses Dyrk1A by 1.5-fold. Trisomy did not affect the ability of NPCs to expand in culture. Twenty-four hours after stimulation of migration and neuronal differentiation, NPCs showed increased expression of Dyrk1A, particularly in the trisomic cultures. After 7 days, NPCs developed into a heterogeneous population of differentiating neurons and astrocytes that expressed Dyrk1A in the nuclei. In comparison with disomic cells, NPCs with trisomy showed premature neuronal differentiation and enhanced γ-aminobutyric acid (GABA)-ergic differentiation, but astrocyte development was unchanged. Harmine prevented premature neuronal maturation of trisomic NPCs but not acceleration of GABA-ergic development. In control NPCs, harmine treatment caused altered neuronal development of NPCs, similar to that in trisomic NPCs with Dyrk1A overexpression. This study suggests that pharmacological normalization of DYRK1A activity may have a potential role in DS therapy. View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05701NeuroCult™ Proliferation Supplement (Mouse & Rat)05702NeuroCult™ Proliferation Kit (Mouse & Rat)05703NeuroCult™ Differentiation Supplement (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat)05707NeuroCult™ Chemical Dissociation Kit (Mouse) -
ReferenceBiasini E et al. (JAN 2012) PloS one 7 3 e33472
The toxicity of a mutant prion protein is cell-autonomous, and can be suppressed by wild-type prion protein on adjacent cells.
Insight into the normal function of PrP(C), and how it can be subverted to produce neurotoxic effects, is provided by PrP molecules carrying deletions encompassing the conserved central region. The most neurotoxic of these mutants, Δ105-125 (called ΔCR), produces a spontaneous neurodegenerative illness when expressed in transgenic mice, and this phenotype can be dose-dependently suppressed by co-expression of wild-type PrP. Whether the toxic activity of ΔCR PrP and the protective activity or wild-type PrP are cell-autonomous, or can be exerted on neighboring cells, is unknown. To investigate this question, we have utilized co-cultures of differentiated neural stem cells derived from mice expressing ΔCR or wild-type PrP. Cells from the two kinds of mice, which are marked by the presence or absence of GFP, are differentiated together to yield neurons, astrocytes, and oligodendrocytes. As a surrogate read-out of ΔCR PrP toxicity, we assayed sensitivity of the cells to the cationic antibiotic, Zeocin. In a previous study, we reported that cells expressing ΔCR PrP are hypersensitive to the toxic effects of several cationic antibiotics, an effect that is suppressed by co-expression of wild type PrP, similar to the rescue of the neurodegenerative phenotype observed in transgenic mice. Using this system, we find that while ΔCR-dependent toxicity is cell-autonomous, the rescuing activity of wild-type PrP can be exerted in trans from nearby cells. These results provide important insights into how ΔCR PrP subverts a normal physiological function of PrP(C), and the cellular mechanisms underlying the rescuing process. View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05701NeuroCult™ Proliferation Supplement (Mouse & Rat)05702NeuroCult™ Proliferation Kit (Mouse & Rat)05703NeuroCult™ Differentiation Supplement (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat) -
ReferenceOstrakhovitch EA et al. (DEC 2012) Archives of biochemistry and biophysics 528 1 21--31
Directed differentiation of embryonic P19 cells and neural stem cells into neural lineage on conducting PEDOT-PEG and ITO glass substrates.
Differentiation of pluripotent and lineage restricted stem cells such as neural stem cells (NSCs) was studied on conducting substrates of various nature without perturbation of the genome with exogenous genetic material or chemical stimuli. Primary mouse adult neural stem cells (NSCs) and P19 pluripotent embryonal (P19 EC) carcinoma cells were used. Expression levels of neuronal markers β-III-tubulin and neurofilament were evaluated by immunochemistry and flow cytometry. It was shown that the ability of the substrate to induce differentiation directly correlated with its conductivity. Conducting substrates (conducting oxides or doped pi-conjugated organic polymers) with different morphology, structure, and conductivity mechanisms all promoted differentiation of NSC and P19 cells into neuronal lineage to a similar degree without use of additional factors such as poly-L-ornithine coating or retinoic acid, as verified by their morphology and upregulation of the neuronal markers but not astrocyte marker GFAP. However, substrates with low conductance below ca. 10(-4) S cm(-2) did not show this ability. Morphology of differentiating cells was visualized by atomic force microscopy. NSCs cells increased β-III-tubulin expression by 95% and P19 cells by over 30%. Our results suggest that the substrate conductivity is a key factor governing the cell fate. Differentiation of P19 cells into neuronal lineage on conducting substrates was attributed to downregualtion of Akt signaling pathway and increase in expression of dual oxidase 1 (DUOX 1). View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05701NeuroCult™ Proliferation Supplement (Mouse & Rat)05702NeuroCult™ Proliferation Kit (Mouse & Rat)05703NeuroCult™ Differentiation Supplement (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat)05715NeuroCult™ Enzymatic Dissociation Kit for Adult CNS Tissue (Mouse and Rat) -
ReferenceBelkind-Gerson J et al. (JAN 2013) Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society 25 1 61--9.e7
Nestin-expressing cells in the gut give rise to enteric neurons and glial cells.
BACKGROUND Neuronal stem cells (NSCs) are promising for neurointestinal disease therapy. Although NSCs have been isolated from intestinal musclularis, their presence in mucosa has not been well described. Mucosa-derived NSCs are accessible endoscopically and could be used autologously. Brain-derived Nestin-positive NSCs are important in endogenous repair and plasticity. The aim was to isolate and characterize mucosa-derived NSCs, determine their relationship to Nestin-expressing cells and to demonstrate their capacity to produce neuroglial networks in vitro and in vivo. METHODS Neurospheres were generated from periventricular brain, colonic muscularis (Musc), and mucosa-submucosa (MSM) of mice expressing green fluorescent protein (GFP) controlled by the Nestin promoter (Nestin-GFP). Neuronal stem cells were also grown as adherent colonies from intestinal mucosal organoids. Their differentiation potential was assessed using immunohistochemistry using glial and neuronal markers. Brain and gut-derived neurospheres were transplanted into explants of chick embryonic aneural hindgut to determine their fate. KEY RESULTS Musc- and MSM-derived neurospheres expressed Nestin and gave rise to cells of neuronal, glial, and mesenchymal lineage. Although Nestin expression in tissue was mostly limited to glia co-labelled with glial fibrillary acid protein (GFAP), neurosphere-derived neurons and glia both expressed Nestin in vitro, suggesting that Nestin+/GFAP+ glial cells may give rise to new neurons. Moreover, following transplantation into aneural colon, brain- and gut-derived NSCs were able to differentiate into neurons. CONCLUSIONS & INFERENCES Nestin-expressing intestinal NSCs cells give rise to neurospheres, differentiate into neuronal, glial, and mesenchymal lineages in vitro, generate neurons in vivo and can be isolated from mucosa. Further studies are needed for exploring their potential for treating neuropathies. View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05701NeuroCult™ Proliferation Supplement (Mouse & Rat)05702NeuroCult™ Proliferation Kit (Mouse & Rat)05703NeuroCult™ Differentiation Supplement (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat)05715NeuroCult™ Enzymatic Dissociation Kit for Adult CNS Tissue (Mouse and Rat) -
ReferenceBirbrair A et al. (JAN 2013) Experimental cell research 319 1 45--63
Skeletal muscle neural progenitor cells exhibit properties of NG2-glia.
Reversing brain degeneration and trauma lesions will depend on cell therapy. Our previous work identified neural precursor cells derived from the skeletal muscle of Nestin-GFP transgenic mice, but their identity, origin, and potential survival in the brain are only vaguely understood. In this work, we show that Nestin-GFP+ progenitor cells share morphological and molecular markers with NG2-glia, including NG2, PDGFRα, O4, NGF receptor (p75), glutamate receptor-1(AMPA), and A2B5 expression. Although these cells exhibit NG2, they do not express other pericyte markers, such as α-SMA or connexin-43, and do not differentiate into the muscle lineage. Patch-clamp studies displayed outward potassium currents, probably carried through Kir6.1 channels. Given their potential therapeutic application, we compared their abundance in tissues and concluded that skeletal muscle is the richest source of predifferentiated neural precursor cells. We found that these cells migrate toward the neurogenic subventricular zone displaying their typical morphology and nestin-GFP expression two weeks after brain injection. For translational purposes, we sought to identify these neural progenitor cells in wild-type species by developing a DsRed expression vector under Nestin-Intron II control. This approach revealed them in nonhuman primates and aging rodents throughout the lifespan. View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05701NeuroCult™ Proliferation Supplement (Mouse & Rat)05702NeuroCult™ Proliferation Kit (Mouse & Rat)05703NeuroCult™ Differentiation Supplement (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat)05715NeuroCult™ Enzymatic Dissociation Kit for Adult CNS Tissue (Mouse and Rat) -
ReferenceNiu H et al. (MAR 2017) Neuroscience Letters 642 71--76
Recombinant insulin-like growth factor binding protein-4 inhibits proliferation and promotes differentiation of neural progenitor cells
Insulin-like growth factor (IGF) is involved in regulating many processes during neural development, and IGF binding protein-4 (IGFBP4) functions as a modulator of IGF actions or in an IGF-independent manner (e.g., via inhibiting Wnt/β-catenin signaling). In the present study, neural progenitor cells (NPCs) were isolated from the forebrain of newborn mice to investigate effects of IGFBP4 on the proliferation and differentiation of NPCs. The proliferation of NPCs was evaluated using Cell Counting Kit-8 (CCK-8) after treatment with or without IGFBP4 as well as blockers of IGF-IR and β-catenin. Phosphorylation levels of Akt, Erk1, 2 and p38 were analyzed by Western blotting. The differentiation of NPCs was evaluated using immunofluorescence and Western blotting. It was shown that exogenous IGFBP4 significantly inhibited the proliferation of NPCs and it did not induce a more pronounced inhibition of cell proliferation after blockade of IGF-IR but it did after antagonism of β-catenin. Akt phosphorylation was significantly decreased and phosphorylation levels of Erk1, 2 and p38 were not significantly changed in IGFBP4-treated NPCs. Excessive IGFBP4 significantly promoted NPCs to differentiate into astrocytes and neurons. These data suggested that exogenous IGFBP4 inhibits proliferation and promotes differentiation of neural progenitor cells mainly through IGF-IR signaling pathway. View PublicationCatalog #:Product Name:05700NeuroCult™ Basal Medium (Mouse & Rat)05701NeuroCult™ Proliferation Supplement (Mouse & Rat)05702NeuroCult™ Proliferation Kit (Mouse & Rat)05703NeuroCult™ Differentiation Supplement (Mouse & Rat)05704NeuroCult™ Differentiation Kit (Mouse & Rat)