You searched for: 05620
-
ReferenceQiao Y et al. (APR 2011) Cancer research 71 8 3076--86
FOXQ1 regulates epithelial-mesenchymal transition in human cancers.
Epithelial-mesenchymal transition (EMT) in cancer cells plays a pivotal role in determining metastatic prowess, but knowledge of EMT regulation remains incomplete. In this study, we defined a critical functional role for the Forkhead transcription factor FOXQ1 in regulating EMT in breast cancer cells. FOXQ1 expression was correlated with high-grade basal-like breast cancers and was associated with poor clinical outcomes. RNAi-mediated suppression of FOXQ1 expression in highly invasive human breast cancer cells reversed EMT, reduced invasive ability, and alleviated other aggressive cancer phenotypes manifested in 3-dimensional Matrigel (BD Biosciences) culture. Conversely, enforced expression of FOXQ1 in differentiated human mammary epithelial cells (HMLER) or epithelial cancer cell lines provoked an epithelial to mesenchymal morphologic change, gain of stem cell-like properties, and acquisition of resistance to chemotherapy-induced apoptosis. Mechanistic investigations revealed that FOXQ1-induced EMT was associated with transcriptional inactivation of the epithelial regulator E-cadherin (CDH1). Our findings define a key role for FOXQ1 in regulating EMT and aggressiveness in human cancer. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceMiller TW et al. (APR 2011) Clinical cancer research : an official journal of the American Association for Cancer Research 17 7 2024--34
A gene expression signature from human breast cancer cells with acquired hormone independence identifies MYC as a mediator of antiestrogen resistance.
PURPOSE: Although most patients with estrogen receptor α (ER)-positive breast cancer initially respond to endocrine therapy, many ultimately develop resistance to antiestrogens. However, mechanisms of antiestrogen resistance and biomarkers predictive of such resistance are underdeveloped. EXPERIMENTAL DESIGN: We adapted four ER(+) human breast cancer cell lines to grow in an estrogen-depleted medium. A gene signature of estrogen independence was developed by comparing expression profiles of long-term estrogen-deprived (LTED) cells to their parental counterparts. We evaluated the ability of the LTED signature to predict tumor response to neoadjuvant therapy with an aromatase inhibitor and disease outcome following adjuvant tamoxifen. We utilized Gene Set Analysis (GSA) of LTED cell gene expression profiles and a loss-of-function approach to identify pathways causally associated with resistance to endocrine therapy. RESULTS: The LTED gene expression signature was predictive of high tumor cell proliferation following neoadjuvant therapy with anastrozole and letrozole, each in different patient cohorts. This signature was also predictive of poor recurrence-free survival in two studies of patients treated with adjuvant tamoxifen. Bioinformatic interrogation of expression profiles in LTED cells revealed a signature of MYC activation. The MYC activation signature and high MYC protein levels were both predictive of poor outcome following tamoxifen therapy. Finally, knockdown of MYC inhibited LTED cell growth. CONCLUSIONS: A gene expression signature derived from ER(+) breast cancer cells with acquired hormone independence predicted tumor response to aromatase inhibitors and associated with clinical markers of resistance to tamoxifen. Activation of the MYC pathway was associated with this resistance. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceLiu C-G et al. (JUN 2011) Annals of surgery 253 6 1165--71
Clinical implications of stem cell gene Oct-4 expression in breast cancer.
PURPOSE: To explore the expression of stem cell genes in breast cancer and the relationship between stem cell gene expression and clinical and pathological characteristics and prognosis of breast cancer. BACKGROUND: By now, stem cell differentiation-related genes and the relationship between the genes and clinic-pathological characteristics and prognosis of breast cancer are still unclear. MATERIALS AND METHODS: CD44+/CD24- tumor cells were selected by Flow cytometry. The differential expression of genes between CD44+/CD24- tumor cells and non-CD44+/CD24- tumor cells were detected by RT(2) Profiler™ PCR Array. The expression of stem cell gene Octamer-4 (Oct-4) was analyzed by immunohistochemistry staining and the relationship between Oct-4 and clinicopathological parameters of breast cancer was determined. RESULTS: Seven different genes including stem cell differentiation-related factors (CD44, Oct-4, and nestin), cell cycle regulators (APC and CDC2), and growth factors (HGF and TGF) were detected as significantly differently expressed between CD44+/CD24- tumor cells and non-CD44+/CD24- tumor cells. Oct-4 protein expressed significantly higher in cancerous tissues than adjacent-tumor tissues (P = 0.001). Moreover, we observed that the expression of Oct-4 protein was related to histological type, lymph node status and molecular type of breast cancer (P = 0.001, 0.006, and 0.001, respectively). After survival analysis, the cases with highly expressed Oct-4 protein attained a significantly poorer postoperative disease-specific survival than those with none/low expressed Oct-4 protein (P = 0.001). In the Cox regression test, tumor size, histological type, disease stage, lymph node metastasis, Her-2 and Oct-4 were detected as the independent prognostic factors (P = 0.031, 0.012, 0.001, 0.002, 0.030, and 0.003, respectively). CONCLUSIONS: Oct-4 was highly expressed in CD44+/CD24- tumor cells, and may be a potential biomarker for the initiation, progression, and differentiation of breast cancer. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceKumar A et al. (JAN 2011) PloS one 6 6 e20701
Evidence that aberrant expression of tissue transglutaminase promotes stem cell characteristics in mammary epithelial cells.
Cancer stem cells (CSCs) or tumor initiating cells (TICs) make up only a small fraction of total tumor cell population, but recent evidence suggests that they are responsible for tumor initiation and the maintenance of tumor growth. Whether CSCs/TICs originate from normal stem cells or result from the dedifferentiation of terminally differentiated cells remains unknown. Here we provide evidence that sustained expression of the proinflammatory protein tissue transglutaminase (TG2) confers stem cell like properties in non-transformed and transformed mammary epithelial cells. Sustained expression of TG2 was associated with increase in CD44(high)/CD24(low/-) subpopulation, increased ability of cells to form mammospheres, and acquisition of self-renewal ability. Mammospheres derived from TG2-transfected mammary epithelial cells (MCF10A) differentiated into complex secondary structures when grown in Matrigel cultures. Cells in these secondary structures differentiated into Muc1-positive (luminal marker) and integrin α6-positive (basal marker) cells in response to prolactin treatment. Highly aggressive MDA-231 and drug-resistant MCF-7/RT breast cancer cells, which express high basal levels of TG2, shared many traits with TG2-transfected MCF10A stem cells but unlike MCF10A-derived stem cells they failed to form the secondary structures and to differentiate into Muc1-positive luminal cells when grown in Matrigel culture. Downregulation of TG2 attenuated stem cell properties in both non-transformed and transformed mammary epithelial cells. Taken together, these results suggested a new function for TG2 and revealed a novel mechanism responsible for promoting the stem cell characteristics in adult mammary epithelial cells. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceHuang X et al. (JUN 2012) Surgical oncology 21 2 103--107
Co-expression of stem cell genes CD133 and CD44 in colorectal cancers with early liver metastasis.
PURPOSE To investigate the expression status and clinical implications of stem cell genes CD133 and CD44 in the colorectal cancers with early liver metastasis. MATERIALS AND METHODS The differential genes of early liver metastases in colorectal cancer were detected by RT(2) Profiler™ PCR Array. The expression and the relationship of stem cell gene CD133 and CD44 were analyzed by immunofluorescent tests. RESULTS CD133 and CD44 were significantly higher co-expressed in colorectal cancer with early liver metastases compared to those without early liver metastases, and the content of CD133 and CD44 proteins decreased following growth of the transplanted tumors. Of the 80 cases without early liver metastases, 12 were observed CD133 and CD44 proteins co-expression, while 36 of the 40 cases with early liver metastases were found CD133 and CD44 proteins co-expression (15% vs. 90%, P textless 0.05). Survival analysis revealed CD133 and CD44 proteins co-expression was associated with poorest prognosis (57.14% vs. 87.41%, X(2) = 48.49, P = 0.001). After Cox regression, age, Duck's stage, lymph node metastasis, and CD133 and CD44 proteins co-expression were shown to be the independent prognostic factors of colorectal cancers. CONCLUSIONS CD133 and CD44 proteins were highly co-expressed in colorectal cancer with early liver metastases, and may be a potential biomarker for the early liver metastases. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceWu H et al. (SEP 2011) Journal of breast cancer 14 3 175--80
Can CD44+/CD24- Tumor Cells Be Used to Determine the Extent of Breast Cancer Invasion Following Neoadjuvant Chemotherapy?
PURPOSE: To investigate the distribution of CD44(+)/CD24(-) cells in breast cancers in relation to tumor size before and after the administration of neoadjuvant chemotherapy. METHODS: CD44(+)/CD24(-) tumor cells obtained from breast cancer specimens were characterized in vivo and in vitro using tumor formation assays and mammosphere generation assays, respectively. The distribution of CD44+/CD24- tumor cells in 78 breast cancer specimens following administration of neoadjuvant chemotherapy was also evaluated using immunofluorescence assays, and this distribution was compared with the extent of tumor invasion predicted by Response Evaluation Criteria in Solid Tumours (RECIST). RESULTS: In 27/78 cases, complete remission (CR) was identified using RECIST. However, 18 of these CR cases were associated with a scattered distribution of tumor stem cells in the outline of the original tumor prior to neoadjuvant chemotherapy. After neoadjuvant chemotherapy, 24 cases involved cancer cells that were confined to the tumor outline, and 21 cases had tumor cells or tumor stem cells overlapping the tumor outline. In addition, there were 6 patients who were insensitive to chemotherapy, and in these cases, both cancer cells and stem cells were detected outside the contours of the tumor volume imaged prior to chemotherapy. CONCLUSION: CD44+/CD24- tumor cells may be an additional parameter to evaluate when determining the extent of breast cancer invasion. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceZhao S et al. (APR 2012) Cancer letters 317 2 192--198
Activation of the aryl hydrocarbon receptor represses mammosphere formation in MCF-7 cells.
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor. Recent studies have reported the anti-tumor effects of the AhR in breast cancer. In this study, we investigated the anti-tumor effect of AhR activation based on the cancer stem cell hypothesis. We show that AhR activation suppressed mammosphere formation of MCF-7 cells and decreased the proportion of cells with high ALDH-1 (aldehyde dehydrogenase 1) activity. In addition, we also demonstrate that AhR activation regulates self-renewal signaling by down-regulating Wnt/$$-catenin and Notch. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceLiu C et al. (MAY 2012) Molecular biology reports 39 5 5875--81
Co-expression of Oct-4 and Nestin in human breast cancers.
The aim is to investigate the clinical implications of the Oct-4 and Nestin protein in human breast cancers. A total of 346 cases including 26 fresh and 320 paraffin-embedded tumor tissues were selected for characterizing the frequency of CD44(+)CD24(-) tumor cells by flow cytometry and the differential expression of the stem cell-related genes between CD44(+)CD24(-) and non-CD44(+)CD24(-) tumor cells was analyzed by PCR Array and immunofluorescence. In comparison with the non-CD44(+)CD24(-) tumor cells, the CD44(+)CD24(-), particularly for those with high percentage of Oct-4(+) and Nestin(+), tumor cells had higher tumorigenicity by forming mammospheres in vitro. More importantly, 42 (13.125%) out of 320 tumor tissues were positive for Oct-4 and Nestin staining. Universal analysis and multivariate analysis revealed that the expression of Oct-4 and Nestin was associated significantly with younger age, pathogenic degrees, lymph node metastasis and triple-negative breast cancer independently (P textless 0.05) as well as shorter survival (P = 0.001). Oct-4 and Nestin were important regulators of the development of breast cancer, and Oct-4 and Nestin may be used as predictors for the prognosis of breast cancers. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceKumar A et al. (JAN 2012) Breast cancer research : BCR 14 1 R4
Evidence that GTP-binding domain but not catalytic domain of transglutaminase 2 is essential for epithelial-to-mesenchymal transition in mammary epithelial cells.
INTRODUCTION: The expression of proinflammatory protein tissue transglutaminase 2 (TG2) is frequently upregulated in multiple cancer cell types. However, the exact role of TG2 in cancer cells is not well-understood. We recently initiated studies to determine the significance of TG2 in cancer cells and observed that sustained expression of TG2 resulted in epithelial-to-mesenchymal transition (EMT) and promoted cancer stem cell (CSC) traits in mammary epithelial cells. These results suggested that TG2 could serve as a promising therapeutic target for overcoming chemoresistance and inhibiting metastatic spread of cancer cells. METHODS: Using various mutant constructs, we analyzed the activity of TG2 that is essential for promoting the EMT-CSC phenotype. RESULTS: Our results suggest that catalytically inactive TG2 (TG2-C277S) is as effective as wild-type TG2 (TG2-WT) in inducing the EMT-CSC in mammary epithelial cells. In contrast, overexpression of a GTP-binding-deficient mutant (TG2-R580A) was completely incompetent in this regard. Moreover, TG2-dependent activation of the proinflammatory transcription factor NF-κB is deemed essential for promoting the EMT-CSC phenotype in mammary epithelial cells. CONCLUSIONS: Our results suggest that the transamidation activity of TG2 is not essential for promoting its oncogenic functions and provide a strong rationale for developing small-molecule inhibitors to block GTP-binding pockets of TG2. Such inhibitors may have great potential for inhibiting the TG2-regulated pathways, reversing drug resistance and inhibiting the metastasis of cancer cells. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceBurke AR et al. (APR 2012) Biomaterials 33 10 2961--2970
The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy.
Breast tumors contain a small population of tumor initiating stem-like cells, termed breast cancer stem cells (BCSCs). These cells, which are refractory to chemotherapy and radiotherapy, are thought to persist following treatment and drive tumor recurrence. We examined whether BCSCs are similarly resistant to hyperthermic therapy, and whether nanoparticles could be used to overcome this resistance. Using a model of triple-negative breast cancer stem cells, we show that BCSCs are markedly resistant to traditional hyperthermia and become enriched in the surviving cell population following treatment. In contrast, BCSCs are sensitive to nanotube-mediated thermal treatment and lose their long-term proliferative capacity after nanotube-mediated thermal therapy. Moreover, use of this therapy in vivo promotes complete tumor regression and long-term survival of mice bearing cancer stem cell-driven breast tumors. Mechanistically, nanotube thermal therapy promotes rapid membrane permeabilization and necrosis of BCSCs. These data suggest that nanotube-mediated thermal treatment can simultaneously eliminate both the differentiated cells that constitute the bulk of a tumor and the BCSCs that drive tumor growth and recurrence. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceLi M et al. (AUG 2012) Cancer immunology, immunotherapy : CII 61 8 1255--1268
Sensitivity of a novel model of mammary cancer stem cell-like cells to TNF-related death pathways.
Cancer stem cells (CSC) are resistant to radiation and chemotherapy and play a significant role in cancer recurrence and metastatic disease. It is therefore important to identify alternative strategies, such as immunotherapies that can be used to control this refractory population. A CD44(+)CD24(-/low) subpopulation of cells within the B6 PyMT-MMTV transgenic mouse-derived AT-3 mammary carcinoma cell line was identified, which had CSC-like characteristics, including pluripotency and a resistance to chemo- and radiotherapy. Therefore, unlike xenograph models that require immunocompromised settings, this novel system may provide a means to study immune-mediated responses against CSC-like cells. The immunobiology of the AT-3 CSC-like cell population was studied by their surface molecule expression profile and their sensitivity to specified cell death pathways. Comparable levels of Rae-1, CD155, CD54 and higher levels of Fas and DR5 were expressed on the AT-3 CSC-like cells compared to non-CSC-like tumor cells. Expression correlated with an in vitro sensitivity to cell death by NK cells or through the ligation of the death receptors (Fas or DR5), by their ligands or anti-Fas and anti-DR5 mAbs. Indeed, compared to the rest of the AT-3 tumor cells, the CD44(+)CD24(-/low) subpopulation of cells were more sensitive to both Fas- and TRAIL-mediated cell death pathways. Therefore, despite the refractory nature of CSC to other conventional therapies, these CSC-like cells were not inherently resistant to specified forms of immune-mediated cell death. These results encourage the continued investigation into immunotherapeutic strategies as a means of controlling breast CSC, particularly through their cell death pathways. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceHu K et al. ( 2012) Breast cancer research : BCR 14 1 R22
Small interfering RNA library screen identified polo-like kinase-1 (PLK1) as a potential therapeutic target for breast cancer that uniquely eliminates tumor-initiating cells.
INTRODUCTION Triple-negative breast cancer (TNBC) high rate of relapse is thought to be due to the presence of tumor-initiating cells (TICs), molecularly defined as being CD44high/CD24-/low. TICs are resilient to chemotherapy and radiation. However, no currently accepted molecular target exists against TNBC and, moreover, TICs. Therefore, we sought the identification of kinase targets that inhibit TNBC growth and eliminate TICs. METHODS A genome-wide human kinase small interfering RNA (siRNA) library (691 kinases) was screened against the TNBC cell line SUM149 for growth inhibition. Selected siRNAs were then tested on four different breast cancer cell lines to confirm the spectrum of activity. Their effect on the CD44high subpopulation and sorted CD44high/CD24-/low cells of SUM149 also was studied. Further studies were focused on polo-like kinase 1 (PLK1), including its expression in breast cancer cell lines, effect on the CD44high/CD24-/low TIC subpopulation, growth inhibition, mammosphere formation, and apoptosis, as well as the activity of the PLK1 inhibitor, BI 2536. RESULTS Of the 85 kinases identified in the screen, 28 of them were further silenced by siRNAs on MDA-MB-231 (TNBC), BT474-M1 (ER+/HER2+, a metastatic variant), and HR5 (ER+/HER2+, a trastuzumab-resistant model) cells and showed a broad spectrum of growth inhibition. Importantly, 12 of 28 kinases also reduced the CD44high subpopulation compared with control in SUM149. Further tests of these 12 kinases directly on a sorted CD44high/CD24-/low TIC subpopulation of SUM149 cells confirmed their effect. Blocking PLK1 had the greatest growth inhibition on breast cancer cells and TICs by about 80% to 90% after 72 hours. PLK1 was universally expressed in breast cancer cell lines, representing all of the breast cancer subtypes, and was positively correlated to CD44. The PLK1 inhibitor BI 2536 showed similar effects on growth, mammosphere formation, and apoptosis as did PLK1 siRNAs. Finally, whereas paclitaxel, doxorubicin, and 5-fluorouracil enriched the CD44high/CD24-/low population compared with control in SUM149, subsequent treatment with BI 2536 killed the emergent population, suggesting that it could potentially be used to prevent relapse. CONCLUSION Inhibiting PLK1 with siRNA or BI 2536 blocked growth of TNBCs including the CD44high/CD24-/low TIC subpopulation and mammosphere formation. Thus, PLK1 could be a potential therapeutic target for the treatment of TNBC as well as other subtypes of breast cancer. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceRao R et al. (APR 2012) Molecular cancer therapeutics 11 4 973--983
Combination of pan-histone deacetylase inhibitor and autophagy inhibitor exerts superior efficacy against triple-negative human breast cancer cells.
Histone deacetylase (HDAC) inhibitors (HDI) induce endoplasmic reticulum (ER) stress and apoptosis, while promoting autophagy, which promotes cancer cell survival when apoptosis is compromised. Here, we determined the in vitro and in vivo activity of the combination of the pan-HDI panobinostat and the autophagy inhibitor chloroquine against human estrogen/progesterone receptor and HER2 (triple)-negative breast cancer (TNBC) cells. Treatment of MB-231 and SUM159PT cells with panobinostat disrupted the hsp90/histone deacetylase 6/HSF1/p97 complex, resulting in the upregulation of hsp. This was accompanied by the induction of enhanced autophagic flux as evidenced by increased expression of LC3B-II and the degradation of the autophagic substrate p62. Treatment with panobinostat also induced the accumulation and colocalization of p62 with LC3B-II in cytosolic foci as evidenced by immunofluorescent confocal microscopy. Inhibition of panobinostat-induced autophagic flux by chloroquine markedly induced the accumulation of polyubiquitylated proteins and p62, caused synergistic cell death of MB-231 and SUM159PT cells, and inhibited mammosphere formation in MB-231 cells, compared with treatment with each agent alone. Finally, in mouse mammary fat pad xenografts of MB-231 cells, a tumor size-dependent induction of heat shock response, ER stress and autophagy were observed. Cotreatment with panobinostat and chloroquine resulted in reduced tumor burden and increased the survival of MB-231 breast cancer xenografts. Collectively, our findings show that cotreatment with an autophagy inhibitor and pan-HDI, for example, chloroquine and panobinostat results in accumulation of toxic polyubiquitylated proteins, exerts superior inhibitory effects on TNBC cell growth, and increases the survival of TNBC xenografts. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceWu F et al. (NOV 2012) Cellular signalling 24 11 1989--1998
Identification of two novel phenotypically distinct breast cancer cell subsets based on Sox2 transcription activity.
Sox2 (sex-determining region Y-box protein 2) is a transcription factor regulating pluripotency in embryonic stem cells. Sox2 is aberrantly expressed in breast and other cancers, though its biological significance remains widely unexplored. To understand the significance of this aberrancy, we assessed the transcription activity of Sox2 in two Sox2-expressing breast cancer cell lines, MCF7 and ZR751, using a lentiviral Sox2 GFP reporter vector. Surprisingly, Sox2 transcription activity, as measured by GFP expression encoded in a Sox2 reporter construct, was detectable only in a small subset of cells in both cell lines. Purification of GFP+ cells (cells with Sox2 activity) and GFP- cells (cells without Sox2 activity) was enriched for two phenotypically distinct cell populations in both MCF7 and ZR751 cell lines. Specifically, GFP+ cells formed significantly more colonies in methylcellulose and more mammospheres in vitro compared to GFP- cells. These phenotypic differences are directly linked to Sox2 as siRNA knockdown of Sox2 in GFP+ cells abolished these abilities. To provide a mechanistic explanation to our observations, we performed gel shift and chromatin immunoprecipitation studies; Sox2 was found to bind to its DNA binding consensus sequence and the promoters of Cyclin D1 and Nanog (two known Sox2 downstream targets) only in GFP+ cells. GFP+ cells also up-regulated CD49f, phospho-GSK3$$, and $$-catenin. In summary, we have identified two novel phenotypically distinct cell subsets in two breast cancer cell lines based on their differential Sox2 transcription activity. We demonstrate that Sox2 transcription activity, and not its protein expression alone, underlies the tumorigenicity and cancer stem cell-like phenotypes in breast cancers. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceZhang CC et al. (SEP 2012) Clinical cancer research : an official journal of the American Association for Cancer Research 18 18 5008--5019
Biomarker and pharmacologic evaluation of the $$-secretase inhibitor PF-03084014 in breast cancer models.
PURPOSE We aimed to assess the biologic activity of PF-03084014 in breast xenograft models. The biomarkers for mechanism and patient stratification were also explored. EXPERIMENTAL DESIGN The in vitro and in vivo properties of PF-03084014 were investigated. The mRNA expressions of 40 key Notch pathway genes at baseline or after treatment were analyzed to link with the antitumor efficacy of PF-03084014 in a panel of breast cancer xenograft models. RESULTS In vitro, PF-03084014 exhibited activity against tumor cell migration, endothelial cell tube formation, and mammosphere formation. In vivo, we observed apoptosis, antiproliferation, reduced tumor cell self-renewal ability, impaired tumor vasculature, and decreased metastasis activity after the treatment of PF-03084014. PF-03084014 treatment displayed significant antitumor activity in 10 of the 18 breast xenograft models. However, the antitumor efficacy in most models did not correlate with the in vitro antiproliferation results in the corresponding cell lines, suggesting the critical involvement of tumor microenvironment during Notch activation. In the tested breast xenograft models, the baseline expressions of the Notch receptors, ligands, and the cleaved Notch1 failed to predict the antitumor response to PF-03084014, whereas several Notch pathway target genes, including HEY2, HES4, and HES3, strongly corresponded with the response with a P value less than 0.01. Many of the best molecular predictors of response were also significantly modulated following PF-03084014 treatment. CONCLUSIONS PF-03084014 showed antitumor and antimetastatic properties via pleiotropic mechanisms. The Notch pathway downstream genes may be used to predict the antitumor activity of PF-03084014 and enrich for responders among breast cancer patients. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceHassiotou F et al. (OCT 2012) Stem cells (Dayton, Ohio) 30 10 2164--2174
Breastmilk is a novel source of stem cells with multilineage differentiation potential.
The mammary gland undergoes significant remodeling during pregnancy and lactation, which is fuelled by controlled mammary stem cell (MaSC) proliferation. The scarcity of human lactating breast tissue specimens and the low numbers and quiescent state of MaSCs in the resting breast have hindered understanding of both normal MaSC dynamics and the molecular determinants that drive their aberrant self-renewal in breast cancer. Here, we demonstrate that human breastmilk contains stem cells (hBSCs) with multilineage properties. Breastmilk cells from different donors displayed variable expression of pluripotency genes normally found in human embryonic stem cells (hESCs). These genes included the transcription factors (TFs) OCT4, SOX2, NANOG, known to constitute the core self-renewal circuitry of hESCs. When cultured in the presence of mouse embryonic feeder fibroblasts, a population of hBSCs exhibited an encapsulated ESC-like colony morphology and phenotype and could be passaged in secondary and tertiary clonogenic cultures. While self-renewal TFs were found silenced in the normal resting epithelium, they were dramatically upregulated in breastmilk cells cultured in 3D spheroid conditions. Furthermore, hBSCs differentiated in vitro into cell lineages from all three germ layers. These findings provide evidence that breastmilk represents a novel and noninvasive source of patient-specific stem cells with multilineage potential and establish a method for expansion of these cells in culture. They also highlight the potential of these cells to be used as novel models to understand adult stem cell plasticity and breast cancer, with potential use in bioengineering and tissue regeneration. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceGilani RA et al. (OCT 2012) Breast cancer research and treatment 135 3 681--692
The importance of HER2 signaling in the tumor-initiating cell population in aromatase inhibitor-resistant breast cancer.
Aromatase inhibitors (AIs) are an effective therapy in treating estrogen receptor-positive breast cancer. Nonetheless, a significant percentage of patients either do not respond or become resistant to AIs. Decreased dependence on ER-signaling and increased dependence on growth factor receptor signaling pathways, particularly human epidermal growth factor receptor 2 (EGFR2/HER2), have been implicated in AI resistance. However, the role of growth factor signaling remains unclear. This current study investigates the possibility that signaling either through HER2 alone or through interplay between epidermal growth factor receptor 1 (EGFR/HER1) and HER2 mediates AI resistance by increasing the tumor initiating cell (TIC) subpopulation in AI-resistant cells via regulation of stem cell markers, such as breast cancer resistance protein (BCRP). TICs and BCRP are both known to be involved in drug resistance. Results from in vitro analyses of AI-resistant versus AI-sensitive cells and HER2-versus HER2+ cells, as well as from in vivo xenograft tumors, indicate that (1) AI-resistant cells overexpress both HER2 and BCRP and exhibit increased TIC characteristics compared to AI-sensitive cells; (2) inhibition of HER2 and/or BCRP decrease TIC characteristics in letrozole-resistant cells; and (3) HER2 and its dimerization partner EGFR/HER1 are involved in the regulation of BCRP. Overall, these results suggest that reducing or eliminating the TIC subpopulation with agents that target BCRP, HER2, EGFR/HER1, and/or their downstream kinase pathways could be effective in preventing and/or treating acquired AI resistance. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceXu C-X et al. (OCT 2012) The Journal of biological chemistry 287 42 34970--34978
MicroRNA miR-214 regulates ovarian cancer cell stemness by targeting p53/Nanog.
Previous studies have shown aberrant expression of miR-214 in human malignancy. Elevated miR-214 is associated with chemoresistance and metastasis. In this study, we identified miR-214 regulation of ovarian cancer stem cell (OCSC) properties by targeting p53/Nanog axis. Enforcing expression of miR-214 increases, whereas knockdown of miR-214 decreases, OCSC population and self-renewal as well as the Nanog level preferentially in wild-type p53 cell lines. Furthermore, we found that p53 is directly repressed by miR-214 and that miR-214 regulates Nanog through p53. Expression of p53 abrogated miR-214-induced OCSC properties. These data suggest the critical role of miR-214 in OCSC via regulation of the p53-Nanog axis and miR-214 as a therapeutic target for ovarian cancer. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceQiu M et al. (JAN 2013) Cancer letters 328 2 261--270
Specific inhibition of Notch1 signaling enhances the antitumor efficacy of chemotherapy in triple negative breast cancer through reduction of cancer stem cells.
Recent evidence suggests that Notch signaling may play a role in regulation of cancer stem cell (CSC) self-renewal and differentiation hence presenting a promising target for development of novel therapies for aggressive cancers such as triple negative breast cancer (TNBC). We generated Notch1 monoclonal antibodies (mAbs) that specifically bind to the negative regulatory region of human Notch1. Notch1 inhibition in TNBC Sum149 and patient derived xenograft (PDX) 144580 models led to significant TGI particularly in combination with docetaxel. More interestingly, Notch1 mAbs caused a reduction in mammosphere formation and CD44+/CD24-/lo cell population. It also resulted in decreased tumor incidence upon re-implantation and delay in tumor recurrence. Our data demonstrated a potent antitumor efficacy of Notch1 mAbs, with a remarkable activity against CSCs. These findings suggest that anti-Notch1 mAbs may provide novel therapies to improve the efficacy of conventional therapies by directly targeting the CSC niche. They may also delay tumor recurrence and hence have a major impact on cancer patient survival. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceXu D et al. ( 2012) PloS one 7 10 e46670
Cancer stem cell-related gene periostin: a novel prognostic marker for breast cancer.
We investigated the expression status of periostin in breast cancer stem cells and its clinical implications in order to lay a foundation for managing breast cancer. CD44+/CD24-/line- tumor cells (CSC) from clinical specimens were sorted using flow cytometry. Periostin expression status was detected in CSC cells and 1,086 breast cancer specimens by Western blot and immunohistochemistry staining, with the CSC ratio determined by immunofluorescence double staining. The relationship between the periostin protein and clinico-pathological parameters and prognosis was subsequently determined. As a result, CSC cells are more likely to generate new tumors in mice and cell microspheres that are deficient in NOD/SCID compared to the control group. Periostin protein was expressed higher in CSC cells compared to the control cells and was found to be related to CSC chemotherapy resistance. Moreover, periostin expression was found to be related to the CSC ratio in 1,086 breast cancer specimens (P = 0.001). In total, 334 (30.76%) of the 1,086 breast cases showed high periostin expression. After universal and Spearman regression correlation analysis, periostin was observed to be related to histological grade, CSC ratio, lymph node metastasis, tumor size, and triple-negative breast cancer (all Ptextless0.05). Furthermore, periostin was shown to attain a significantly more distant bone metastasis and worse disease-specific survival than those with none or low-expressed periostin protein (P = 0.001). In the Cox regression test, periostin protein was detected as an independent prognostic factor (P = 0.001). In conclusion, periostin was found to be related to the CSC and an independent prognostic factor for breast cancer. It is also perhaps a potential target to breast cancer. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceBianco C et al. (JUN 2013) Journal of cellular physiology 228 6 1174--1188
Regulation of human Cripto-1 expression by nuclear receptors and DNA promoter methylation in human embryonal and breast cancer cells.
Human Cripto-1 (CR-1) plays an important role in regulating embryonic development while also regulating various stages of tumor progression. However, mechanisms that regulate CR-1 expression during embryogenesis and tumorigenesis are still not well defined. In the present study, we investigated the effects of two nuclear receptors, liver receptor homolog (LRH)-1 and germ cell nuclear factor receptor (GCNF) and epigenetic modifications on CR-1 gene expression in NTERA-2 human embryonal carcinoma cells and in breast cancer cells. CR-1 expression in NTERA-2 cells was positively regulated by LRH-1 through direct binding to a DR0 element within the CR-1 promoter, while GCNF strongly suppressed CR-1 expression in these cells. In addition, the CR-1 promoter was unmethylated in NTERA-2 cells, while T47D, ZR75-1, and MCF7 breast cancer cells showed high levels of CR-1 promoter methylation and low CR-1 mRNA and protein expression. Treatment of breast cancer cells with a demethylating agent and histone deacetylase inhibitors reduced methylation of the CR-1 promoter and reactivated CR-1 mRNA and protein expression in these cells, promoting migration and invasion of breast cancer cells. Analysis of a breast cancer tissue array revealed that CR-1 was highly expressed in the majority of human breast tumors, suggesting that CR-1 expression in breast cancer cell lines might not be representative of in vivo expression. Collectively, these findings offer some insight into the transcriptional regulation of CR-1 gene expression and its critical role in the pathogenesis of human cancer. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceDai L et al. (FEB 2013) The American journal of pathology 182 2 577--585
CD147-dependent heterogeneity in malignant and chemoresistant properties of cancer cells.
CD147 (alias emmprin or basigin), an integral plasma membrane glycoprotein and a member of the Ig superfamily, is widespread in normal tissues, but highly up-regulated in many types of malignant cancer cells. CD147 is multifunctional, with numerous binding partners. Recent studies suggest that complexes of CD147 with the hyaluronan receptor CD44 and associated transporters and receptor tyrosine kinases are enriched in the plasma membrane of cancer stem-like cells. Here, we show that subpopulations of tumor cell lines constitutively expressing high levels of cell-surface CD147 exhibit cancer stem-like cell properties; that is, they exhibit much greater invasiveness, anchorage-independent growth, spheroid formation, and drug resistance in vitro and higher tumorigenicity in vivo than those constitutively expressing low levels of cell-surface CD147. Primary CD147-rich cell subpopulations derived from mouse mammary adenocarcinomas also exhibit high levels of invasiveness and spheroid-forming capacity, whereas CD147-low cells do not. Moreover, localization at the plasma membrane of CD44, the EGF receptor, the ABCB1 and ABCG2 drug transporters, and the MCT4 monocarboxylate transporter is elevated in cells constitutively expressing high levels of cell-surface CD147. These results show that CD147 is associated with assembly of numerous pro-oncogenic proteins in the plasma membrane and may play a fundamental role in properties characteristic of cancer stem-like cells. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceRaouf A and Sun YJ ( 2013) Methods in molecular biology (Clifton, N.J.) 946 363--381
In vitro methods to culture primary human breast epithelial cells.
Current evidence suggests that much like leukemia, breast tumors are maintained by a small subpopulation of tumor cells that have stem cell properties. These cancer stem cells are envisaged to be responsible for tumor formation and relapse. Therefore, knowledge about their nature will provide a platform to develop therapies to eliminate these breast cancer stem cells. This concept highlights the need to understand the mechanisms that regulate the normal functions of the breast stem cells and their immediate progeny as alterations to these same mechanisms can cause these primitive cells to act as cancer stem cells. The study of the primitive cell functions relies on the ability to isolate them from primary sources of breast tissue. This chapter describes processing of discarded tissue from reduction mammoplasty samples as sources of normal primary human breast epithelial cells and describes cell culture systems to grow single-cell suspensions prepared from these reduction samples in vitro. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit -
ReferenceAxlund SD et al. (FEB 2013) Hormones & cancer 4 1 36--49
Progesterone-inducible cytokeratin 5-positive cells in luminal breast cancer exhibit progenitor properties.
Progestins play a deleterious role in the onset of breast cancer, yet their influence on existing breast cancer and tumor progression is not well understood. In luminal estrogen receptor (ER)- and progesterone receptor (PR)-positive breast cancer, progestins induce a fraction of cells to express cytokeratin 5 (CK5), a marker of basal epithelial and progenitor cells in the normal breast. CK5(+) cells lose expression of ER and PR and are relatively quiescent, increasing their resistance to endocrine and chemotherapy compared to intratumoral CK5(-)ER(+)PR(+) cells. Characterization of live CK5(+) cells has been hampered by a lack of means for their direct isolation. Here, we describe optical (GFP) and bioluminescent (luciferase) reporter models to quantitate and isolate CK5(+) cells in luminal breast cancer cell lines utilizing the human KRT5 gene promoter and a viral vector approach. Using this system, we confirmed that the induction of GFP(+)/CK5(+) cells is specific to progestins, is dependent on PR, can be blocked by antiprogestins, and does not occur with other steroid hormones. Progestin-induced, fluorescence-activated cell sorting-isolated CK5(+) cells had lower ER and PR mRNA, were slower cycling, and were relatively more invasive and sphere forming than their CK5(-) counterparts in vitro. Repeated progestin treatment and selection of GFP(+) cells enriched for a persistent population of CK5(+) cells, suggesting that this transition can be semi-permanent. These data support that in PR(+) breast cancers, progestins induce a subpopulation of CK5(+)ER(-)PR(-) cells with enhanced progenitor properties and have implications for treatment resistance and recurrence in luminal breast cancer. View PublicationCatalog #:Product Name:05620MammoCult™ Human Medium Kit