BrainPhys™ Neuronal Medium

Serum-free neurophysiological basal medium for improved neuronal function

BrainPhys™ Neuronal Medium

Serum-free neurophysiological basal medium for improved neuronal function

500 mL
Catalog #05790
83 USD

BrainPhys™ Neuronal Medium and SM1 Kit

Kit including BrainPhys™ Neuronal Medium and SM1 Neuronal Supplement for culture of primary and ES/iPS cell-derived neurons

500 mL Kit
Catalog #05792
161 USD

BrainPhys™ Neuronal Medium N2-A & SM1 Kit

Kit including BrainPhys™ Neuronal Medium, SM1 Neuronal Supplement, and N2 Supplement-A for culture of ES/iPS cell-derived neurons

500 mL Kit
Catalog #05793
239 USD

Overview

BrainPhys™ Neuronal Medium is a defined and serum-free neuronal basal medium. BrainPhys™ may be used to culture primary neurons or neurons derived from human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells. Based on the formulation published by Cedric Bardy and Fred H. Gage (C Bardy et al. Proc Natl Acad Sci USA, 2015), BrainPhys™ is more representative of the central nervous system extracellular environment and increases the proportion of synaptically active neurons. Applications of BrainPhys™ Neuronal Medium include culture of primary neurons, differentiation and maturation of human ES/iPS cell-derived neurons, microelectrode array-based recording of neuronal activity, live in vitro fluorescent imaging (including calcium imaging and optogenetic stimulation and recording) and transdifferentiation (lineage conversion) of somatic cells to neurons.

To ensure cell survival in long-term serum-free culture, BrainPhys™ must be combined with an appropriate serum-replacement supplement, such as NeuroCult™ SM1 Neuronal Supplement (Catalog #05711) and/or N2 Supplement-A (Catalog #07152) . The BrainPhys™ Neuronal Medium and SM1 Kit (Catalog #05792) is recommended for primary neuronal culture. The BrainPhys™ Neuronal Medium N2-A/SM1 Kit (Catalog #05793) is recommended for the differentiation and maturation of ES/iPS cell-derived neurons, in combination with lineage-specific growth factors and/or small molecules.